FEATURES OF EXPRESSION OF KI-67 AND NFE2L2 IN TARGET ORGANS OF MELANOMA METASTASIS IN PREMETASTATIC PHASE


Cite item

Full Text

Abstract

Tumor microenvironment is known to be an active participant of tumor development. Tumor microenvironment is functional cell community interacting with cancer cells and promoting proliferation, invasion and metastasis of tumor cells. In the article features of Ki-67 and NFE2L2 expression levels in target organs of melanoma metastasis in premetastatic phase are investigated. Increased Ki-67expression levels in lung tissue, liver and kidneys and decreased NFE2L2 levels in liverandkidneys can be the markers of structural and functional reorganization of melanoma metastasis target organs in premetastatic phase of melanoma development.

About the authors

O. N Sergeeva

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk,660022, Russian Federation

N. V Palkina

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk,660022, Russian Federation

M. B Aksenenko

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk,660022, Russian Federation

A. V Komina

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk,660022, Russian Federation

E. Yu Sergeeva

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Krasnoyarsk,660022, Russian Federation

Tatiana G. Ruksha

Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky

Email: tatyana_ruksha@mail.ru
MD, PhD, DSc., Head of Department of pathophysiology, KrasSMU n.a. prof. V.F. Voyno-Yasenetsky, Krasnoyarsk, 660022, Russian Federation Krasnoyarsk,660022, Russian Federation

References

  1. Tas F. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J. Oncol. 2012; 2012: 647684. doi: 10.1155/2012/647684
  2. Жуковец А.Г. Современные принципы и перспективы лечения меланомы кожи. Онкологический журнал. 2015; 36(4): 69-76
  3. Chew V., Toh H.C., Abastado J.P. Immune microenvironment in tumor progression: characteristics and challenges for therapy. J. Oncol. 2012; 2012: 608406. doi: 10.1155/2012/608406.
  4. Son В., Lee S., Youn H., Kim E., Kim W., Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2017; 8(3): 3933-45. doi: 10.18632/oncotarget.13907.
  5. Zhang L., Hu Y., Xi N., Song J., Huang W., Song S., et al. Partial oxygen pressure affects the expression of prognostic biomarkers HIF-1 alpha, Ki-67, and CK20 in the microenvironment of colorectal cancer tissue. Oxid. Med. Cell. Longev. 2016; 2016: 1204715. doi: 10.1155/2016/1204715.
  6. Park S.A., Surh Y.J. Modulation of tumor microenvironment by chemopreventive natural products. Ann. N.Y. Acad. Sci. 2017; 1401(1): 65-74. doi: 10.1111/nyas.13395.
  7. Yang L., Lin P.C. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin. Cancer Biol. 2017; 47: 185-95. doi: 10.1016/j.semcancer.2017.08.001.
  8. Psaila B., Lyden D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer. 2009; 9(4): 285-93. doi: 10.1038/nrc2621.
  9. Winking H., Gerdes J., Traut W. Expression of the proliferation marker Ki-67 during early mouse development. Cytogenet. Genome Res. 2004; 105(2-4): 251-6. doi: 10.1159/000078196.
  10. Uguen A., Talagas M., Costa S., Duigou S., Bouvier S., De Braekeleer M., Marcorelles P. A p16 Ki-67 HMB45 immunohistochemistry scoring system as an ancillary diagnostic tool in the diagnosis of melanoma. Diagn. Pathol. 2015; 10: 195. doi: 10.1186/s13000-015-0431-9.
  11. Шишкин М.А. Особенности иммуногистохимической экспрессии маркера клеточной пролиферации Ki-67 в опухолевых и стромальных клетках колоректальной аденокарциномы. Патологiя. 2016; 37(2): 76-81
  12. Hintsala H.R., Haapasaari K.M., Soini Y., Karihtala P. An immunohistochemical study of NFE2L2, KEAP1 and 8-hydroxy-2’-deoxyguanosine and the EMT markers SNAI2, ZEB1 and TWIST1 in metastatic melanoma. Histol. Histopathol. 2017; 32(2): 129-36. doi: 10.14670/HH-11-778.
  13. Hintsala H.R., Jokinen E., Haapasaari K.M., Moza M., Ristimaki A., Soini Y., et al. Nrf2/Keap1 pathway and expression of oxidative stress lesions 8-hydroxy-2’-deoxyguanosine and nitrotyrosine in melanoma. Anticancer Res. 2016; 36(4): 1497-506.
  14. Jaramillo M.C., Zhang D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013; 27(20): 2179-91. doi: 10.1101/gad.225680.113.
  15. Ruksha T.G., Aksenenko M.B., Papadopoulus V. Role of translocator protein in melanoma growth and progression. Arch. Dermatol. Res. 2012; 304(10): 839-45. doi: 10.1007/s00403-012-1294-5.
  16. Costache M., Stoica A., Contolenco A., Costache D., Cirstoiu C., Simionescu O., George S. Metastatic melanoma in the femur - case report with review of literature: a pathologists point of view. Maedica (Buchar). 2014; 9(1): 62-7.
  17. Mervic L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One. 2012; 7(3): e32955. doi: 10.1371/journal.pone.0032955
  18. Damsky W.E., Rosenbaum L.E., Bosenberg M. Decoding melanoma metastasis. Cancers (Basel). 2011; 3(1): 126-63. doi: 10.3390/cancers3010126.
  19. Аксененко М.Б., Шестакова Л.А., Рукша Т.Г. Особенности метастазирования перевиваемой меланомы В16 после ингибирования активности ММП-9. Сибирский онкологический журнал. 2012; 11(1): 31-5
  20. Sobecki M., Mrouj K., Camasses A., Parisis N., Nicolas E., Lleres D., et al. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016; 5: e13722. doi: 10.7554/eLife.13722.
  21. Ilmonen S., Hernberg М., Pyrhonen S., Tarkkanen J., Asko-Seljavaara S. Ki-67, Bcl-2 and p53 expression in primary and metastatic melanoma. Melanoma Res. 2005; 15(5): 375-81.
  22. Bussard K.M., Mutkus L., Stumpf K., Gomez-Manzano C., Marini F.C. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016; 18(1): 84. doi: 10.1186/s13058-016-0740-2.
  23. Beyer T.A., Xu W., Teupser D., auf dem Keller U., Bugnon P., Hildt E., et al. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J. 2008; 27(1): 212-23. doi: 10.1038/sj.emboj.7601950.
  24. Murakami S., Motohashi H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic. Biol. Med. 2015; 88(Pt B): 168-78. doi: 10.1016/j.freeradbiomed.2015.06.030.
  25. Плешкан В.В., Зиновьева М.В., Свердлов Е.Д. Меланома: Поверхностные маркеры как первый «порт» адресной доставки терапевтических генов при многоуровневой генной терапии. Молекулярная биология. 2011; 45(3): 416-33

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».