Therapeutic potential of prostaglandins in dermatology: focus on vitiligo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents an analysis of the therapeutic potential of prostaglandins in dermatology, with an emphasis on their application in vitiligo.

Prostaglandins are a group of low-molecular-weight lipid eicosanoids capable of regulating numerous physiological processes, including renal function, platelet aggregation, neurotransmitter release, and immune system activity, as well as influencing the skin, gastrointestinal tract, and reproductive system. The ubiquitous presence of prostaglandins in body tissues and their involvement in the regulation of inflammatory, regenerative, and proliferative processes make these molecules a promising subject for dermatological research.

The therapeutic potential of prostaglandins in dermatology extends far beyond their initial indications. Due to their unique properties, prostaglandins exert a complex effect: on the one hand, they activate melanocytes and stimulate melanogenesis; on the other hand, they modulate immune responses by suppressing autoimmune reactions. This article provides a detailed examination of the mechanisms of action of prostaglandins, including their role in inflammation regulation and their interaction with receptors in the skin. The advantages of prostaglandins in combination therapy for vitiligo are discussed, particularly in conjunction with phototherapy, microneedling, and laser-based methods. The article presents data demonstrating the high efficacy of prostaglandins in treating vitiligo, especially in resistant forms of the disease. The authors emphasize that prostaglandin-based therapy may significantly enhance vitiligo treatment outcomes by increasing repigmentation stability and providing more sustained results. The article also highlights the need for further research to optimize dosing regimens, treatment protocols, and duration of prostaglandin therapy.

This review article is based on a systematic search of scientific data (original research, clinical studies, reviews, and guidelines) reflecting current insights into the role of prostaglandins in dermatology and their therapeutic potential in vitiligo over 1987 to 2025 from PubMed, Scopus, Web of Science, and eLibrary.ru.

About the authors

Elizaveta Yu. Djahaia

The First Sechenov Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: elizaveta_djahaia@mail.ru
ORCID iD: 0009-0002-3741-6619
SPIN-code: 8308-7621
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992

Kira Yu. Kryuchkova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: kira.kruchkova@mail.ru
ORCID iD: 0000-0002-1172-9695
SPIN-code: 4743-6244
Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992

Lyailya N. Kayumova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: avestohka2005@inbox.ru
ORCID iD: 0000-0003-0301-737X
SPIN-code: 4391-9553

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992

Konstantin V. Smirnov

The First Sechenov Moscow State Medical University (Sechenov University)

Email: puva3@mail.ru
ORCID iD: 0000-0001-7660-7958
SPIN-code: 2054-1086

MD, Cand. Sci. (Medicine)

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992

Konstantin M. Lomonosov

The First Sechenov Moscow State Medical University (Sechenov University)

Email: lamclinic@yandex.ru
ORCID iD: 0000-0002-4580-6193
SPIN-code: 4784-9730

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 8 Trubetskaya st, bldg 2, Moscow, 119992

References

  1. Yanes DA, Mosser-Goldfarb JL. Emerging therapies for atopic dermatitis: the prostaglandin/leukotriene pathway. J Am Acad Dermatol. 2018;78(3 Suppl 1):S71–S75. doi: 10.1016/j.jaad.2017.12.021
  2. Harris SG, Padilla J, Koumas L, et al. Prostaglandins as modulators of immunity. Trends Immunol. 2002;23(3):144–150. doi: 10.1016/s1471-4906(01)02154-8
  3. Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: from basic biology to therapeutic interventions. Eur J Immunol. 2021;51(10):2399–2416. doi: 10.1002/eji.202048909
  4. Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000. doi: 10.1161/ATVBAHA.110.207449
  5. Cheng H, Huang H, Guo Z, et al. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics. 2021;11(18):8836–8854. doi: 10.7150/thno.63396
  6. Yasukawa K, Okuno T, Yokomizo T. Eicosanoids in skin wound healing. Int J Mol Sci 2020;21(22):8435. doi: 10.3390/ijms21228435
  7. Wautier JL, Wautier MP. Pro- and Anti-inflammatory prostaglandins and cytokines in humans: a mini review. Int J Mol Sci. 2023;24(11):9647. doi: 10.3390/ijms24119647
  8. Bull HA, Dowd PM. Prostaglandins, interleukins, and cutaneous inflammation. Immunomethods. 1993;2(3):219–226. doi: 10.1006/immu.1993.1025
  9. Calabrese L, Fiocco Z, Satoh TK, et al. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186(6):925–941. doi: 10.1111/bjd.20975
  10. Honda T, Kabashima K. Prostanoids in allergy. Allergol Int. 2015;64(1):11–16. doi: 10.1016/j.alit.2014.08.002
  11. Hensby CN, Shroot B, Schaefer H, et al. Prostaglandins in human skin disease. Br J Dermatol. 1983;109(Suppl 25):22–25. doi: 10.1111/j.1365-2133.1983.tb06813.x
  12. Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med (Berl). 2006;84(1):75–87. doi: 10.1007/s00109-005-0715-8
  13. Altman K, Chang C. Pathogenic intracellular and autoimmune mechanisms in urticaria and angioedema. Clin Rev Allergy Immunol. 2013;45(1):47–62. doi: 10.1007/s12016-012-8326-y
  14. Greaves MW, McDonald-Gibson W. Itch: role of prostaglandins. Br Med J. 1973;3(5881):608–609. doi: 10.1136/bmj.3.5881.608
  15. Lovell CR, Burton PA, Duncan EH, Burton JL. Prostaglandins and pruritus. Br J Dermatol. 1976;94(3):273–275. doi: 10.1111/j.1365-2133.1976.tb04383.x
  16. Nagai H. Prostaglandin as a target molecule for pharmacotherapy of allergic inflammatory diseases. Allergol Int. 2008;57(3):187–196. doi: 10.2332/allergolint.R-08-161
  17. Shiraishi N, Nomura T, Tanizaki H, et al. Prostaglandin E2-EP3 axis in fine-tuning excessive skin inflammation by restricting dendritic cell functions. PLoS One. 2013;8(7):e69599. doi: 10.1371/journal.pone.0069599
  18. Angeli V, Staumont D, Charbonnier AS, et al. Activation of the D prostanoid receptor 1 regulates immune and skin allergic responses. J Immunol. 2004;172(6):3822–3829. doi: 10.4049/jimmunol.172.6.3822
  19. Sarashina H, Tsubosaka Y, Omori K, et al. Opposing immunomodulatory roles of prostaglandin D2 during the progression of skin inflammation. J Immunol. 2014;192(1):459–465. doi: 10.4049/jimmunol.1302080
  20. Cordeiro MF, Gandolfi S, Gugleta K, et al. How latanoprost changed glaucoma management. Acta Ophthalmol. 2024;102(2):e140–e155. doi: 10.1111/aos.15725
  21. Bakker R, Pierce S, Myers D. The role of prostaglandins E1 and E2, dinoprostone, and misoprostol in cervical ripening and the induction of labor: a mechanistic approach. Arch Gynecol Obstet. 2017;296(2):167–179. doi: 10.1007/s00404-017-4418-5
  22. Chiba T, Kashiwagi K, Kogure S, et al. Iridial pigmentation induced by latanoprost ophthalmic solution in Japanese glaucoma patients. J Glaucoma. 2001;10(5):406–410. doi: 10.1097/00061198-200110000-00008
  23. Alexander CL, Miller SJ, Abel SR. Prostaglandin analog treatment of glaucoma and ocular hypertension. Ann Pharmacother. 2002;36(3):504–511. doi: 10.1345/aph.1A178
  24. Inoue K, Shiokawa M, Higa R, et al. Adverse periocular reactions to five types of prostaglandin analogs. Eye (Lond). 2012;26(11):1465–1472. doi: 10.1038/eye.2012.195
  25. Carruthers J, Beer K, Carruthers A, et al. Bimatoprost 0.03% for the treatment of eyebrow hypotrichosis. Dermatol Surg. 2016;42(5):608–617. doi: 10.1097/DSS.0000000000000755
  26. Beer KR, Julius H, Dunn M, Wilson F. Treatment of eyebrow hypotrichosis using bimatoprost: a randomized, double-blind, vehicle-controlled pilot study. Dermatol Surg. 2013;39(7):1079–1087. doi: 10.1111/dsu.12199
  27. Yoelin SG, Fagien S, Cox SE, et al. A retrospective review and observational study of outcomes and safety of bimatoprost ophthalmic solution 0.03% for treating eyelash hypotrichosis. Dermatol Surg. 2014;40(10):1118–1124. doi: 10.1097/01.DSS.0000452658.83001.d9
  28. Blume-Peytavi U, Lönnfors S, Hillmann K, Garcia Bartels N. A randomized double-blind placebo-controlled pilot study to assess the efficacy of a 24-week topical treatment by latanoprost 0.1% on hair growth and pigmentation in healthy volunteers with androgenetic alopecia. J Am Acad Dermatol. 2012;66(5):794–800. doi: 10.1016/j.jaad.2011.05.026
  29. Renert-Yuval Y, Guttman-Yassky E. The changing landscape of alopecia areata: the therapeutic paradigm. Adv Ther. 2017;34(7):1594–1609. doi: 10.1007/s12325-017-0542-7
  30. Levy LL, Emer JJ. Female pattern alopecia: current perspectives. Int J Womens Health. 2013;5:541–556. doi: 10.2147/IJWH.S49337
  31. Barrón-Hernández YL, Tosti A. Bimatoprost for the treatment of eyelash, eyebrow and scalp alopecia. Expert Opin Investig Drugs. 2017;26(4):515–522. doi: 10.1080/13543784.2017.1303480
  32. Barton VR, Toussi A, Awasthi S, Kiuru M. Treatment of pediatric alopecia areata: a systematic review. J Am Acad Dermatol. 2021;86(6):1318–1334. doi: 10.1016/j.jaad.2021.04.077
  33. Nashan D, Nieschlag E. Male androgenetic alopecia. In: Andrology. First online: 27 October 2023. P. 491–499. doi: 10.1007/978-3-031-31574-9_33
  34. Eriksson L, Lindström B, Ekenberg L. Patients’ experiences of telerehabilitation at home after shoulder joint replacement. J Telemed Telecare. 2011;17(1):25–30. doi: 10.1258/jtt.2010.100317
  35. De Caridi G, Massara M, Stilo F, et al. Effectiveness of prostaglandin E1 in patients with mixed arterial and venous ulcers of the lower limbs. Int Wound J. 2016;13(5):625–629. doi: 10.1111/iwj.12334
  36. Massaki AB, Fabi SG, Fitzpatrick R. Repigmentation of hypopigmented scars using an erbium-doped 1,550-nm fractionated laser and topical bimatoprost. Dermatologic Surg. 2012;38(7 Pt 1):995–1001. doi: 10.1111/j.1524-4725.2012.02389.x
  37. Matejka M, Nell A, Kment G, et al. Local benefit of prostaglandin E2 in radiochemotherapy-induced oral mucositis. Br J Oral Maxillofac Surg. 1990;28(2):89–91. doi: 10.1016/0266-4356(90)90128-8
  38. Porteder H, Rausch E, Kment G, et al. Local prostaglandin E2 in patients with oral malignancies undergoing chemo- and radiotherapy. J Craniomaxillofac Surg. 1988;16(8):371–374. doi: 10.1016/s1010-5182(88)80082-9
  39. Remy W, Sigl I, Leipold B. Prostaglandin E2 gel improvement of psoriatic lesions. Int J Dermatol. 1986;25(4):266–268. doi: 10.1111/j.1365-4362.1986.tb02240.x
  40. Pathak GN, Tan IJ, Bai G, et al. Vitiligo: from mechanisms of disease to treatable pathways. Ski Heal Dis. 2024;4(6):e460. doi: 10.1002/ski2.460
  41. Marchioro HZ, Silva de Castro CC, Fava VM, et al. Update on the pathogenesis of vitiligo. An Bras Dermatol. 2022;97(4):478–490. doi: 10.1016/j.abd.2021.09.008
  42. Speeckaert R, Caelenberg E Van, Belpaire A, et al. Vitiligo: from pathogenesis to treatment. J Clin Med. 2024;13(17):5225. doi: 10.3390/jcm13175225
  43. Diotallevi F, Gioacchini H, De Simoni E, et al. Vitiligo, from pathogenesis to therapeutic advances: state of the art. Int J Mol Sci. 2023;24(5):4910. doi: 10.3390/ijms24054910
  44. Iwanowski T, Kołkowski K, Nowicki RJ, Sokołowska-Wojdyło M. Etiopathogenesis and emerging methods for treatment of vitiligo. Int J Mol Sci. 2023;24(11):9749. doi: 10.3390/ijms24119749
  45. Tomita Y, Iwamoto M, Masuda T, Tagami H. Stimulatory effect of prostaglandin E2 on the configuration of normal human melanocytes in vitro. J Invest Dermatol. 1987;89(3):299–301. doi: 10.1111/1523-1747.ep12471536
  46. Nordlund JJ, Collins CE, Rheins LA. Prostaglandin E2 and D2 but not MSH stimulate the proliferation of pigment cells in the pinnal epidermis of the DBA/2 mouse. J Invest Dermatol. 1986;86(4):433–437. doi: 10.1111/1523-1747.ep12285717
  47. Pourriyahi H, Hosseini NS, Nooshabadi MP, et al. Utility of prostaglandin analogues and phosphodiesterase inhibitors as promising last resorts for the treatment of vitiligo: a systematic review, from mechanisms of action to mono-, combination and comparative therapies. J Cosmet Dermatol. 2024;23(11):3466–3487. doi: 10.1111/jocd.16468
  48. Kim JY, Shin JY, Kim MR, et al. siRNA-mediated knock-down of COX-2 in melanocytes suppresses melanogenesis. Exp Dermatol. 2012;21(6):420–425. doi: 10.1111/j.1600-0625.2012.01483.x
  49. Neinaa YM, Mahmoud MA, El Maghraby GM, Ibrahim ZA. Efficacy of prostaglandin E2 versus prostaglandin F2 alpha assisted with narrowband-UVB in stable vitiligo. Arch Dermatol Res. 2023;315(9):2647–2653. doi: 10.1007/s00403-023-02700-8
  50. Scott G, Leopardi S, Printup S, et al. Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. J Invest Dermatol. 2004;122(5):1214–1224. doi: 10.1111/j.0022-202X.2004.22516.x
  51. Soontrapa K, Honda T, Sakata D, et al. Prostaglandin E2-prostoglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci USA. 2011;108(16):6668–6673. doi: 10.1073/pnas.1018625108
  52. Fu C, Chen J, Lu J, et al. Roles of inflammation factors in melanogenesis (Review). Mol Med Rep. 2020;21(3):1421–1430. doi: 10.3892/mmr.2020.10950
  53. Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatology Venereol. 2018;32(5):657–682. doi: 10.1111/jdv.14891
  54. Oray M, Abu Samra K, Ebrahimiadib N, et al. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–465. doi: 10.1517/14740338.2016.1140743
  55. Singh RK. Impact of Ultraviolet Light on Vitiligo. Adv Exp Med Biol. 2017;996:55–60. doi: 10.1007/978-3-319-56017-5_5
  56. Parsad D, Pandhi R, Dogra S, Kumar B. Topical prostaglandin analog (PGE2) in vitiligo: a preliminary study. Int J Dermatol. 2002;41(12):942–945. doi: 10.1046/j.1365-4362.2002.01612.x
  57. Kapoor R, Phiske MM, Jerajani HR. Evaluation of safety and efficacy of topical prostaglandin E2 in treatment of vitiligo. Br J Dermatol. 2009;160(4):861–863. doi: 10.1111/j.1365-2133.2008.08923.x
  58. Anbar TS, El-Ammawi TS, Abdel-Rahman AT, Hanna MR. The effect of latanoprost on vitiligo: a preliminary comparative study. Int J Dermatol. 2015;54(5):587–593. doi: 10.1111/ijd.12631
  59. Korobko IV, Lomonosov KM. A pilot comparative study of topical latanoprost and tacrolimus in combination with narrow-band ultraviolet B phototherapy and microneedling for the treatment of nonsegmental vitiligo. Dermatol Ther. 2016;29(6):437–441. doi: 10.1111/dth.12383
  60. Neinaa YM, Lotfy SS, Ghaly NR, Doghaim NN. A comparative study of combined microneedling and narrowband ultraviolet B phototherapy versus their combination with topical latanoprost in the treatment of vitiligo. Dermatol Ther. 2021;34(2):e14813. doi: 10.1111/dth.14813
  61. Fawzy M, Al-Mokadem S, Alshereef M, Elkholy B. Narrowband ultraviolet B phototherapy combined with intralesional injection of either latanoprost or platelet-rich plasma for stable nonsegmental vitiligo. Photodermatol Photoimmunol Photomed. 2024;40(1):e12929. doi: 10.1111/phpp.12929
  62. Eldelee SA, Gheida SF, Sarhan NI, et al. Evaluation of the effect of combined intralesional injection of prostaglandin F2α with narrow band UVB phototherapy in treatment of resistant cases of vitiligo. J Dermatolog Treat. 2021;32(4):383–390. doi: 10.1080/09546634.2019.1658860
  63. Kanokrungsee S, Khunkhet S, Rojhirunsakool S, et al. Triple combination therapy of narrowband ultraviolet B, fractional carbon dioxide laser and topical bimatoprost 0.01% for non-segmental vitiligo on non-facial areas: a randomized half-body, double-blind, placebo-controlled, comparative study. Dermatol Ther. 2022;35(1):e15198. doi: 10.1111/dth.15198
  64. Omar SS, Elmulla KF, Aly RG, et al. A triple combination of latanoprost, fractional CO2 laser, and platelet-rich plasma in localized vitiligo: a clinical and histopathologic study. Photodermatol Photoimmunol Photomed. 2024;40(1):e12944. doi: 10.1111/phpp.12944
  65. Zaky MS, Atallah RB, El Abasy NT, Elsaie ML. Comparative study between efficacy of Excimer light with topical Tacrolimus 0.1% versus excimer light with topical Bimatoprost 0.01% in treatment of facial Vitiligo. Arch Dermatol Res. 2024;316(7):350. doi: 10.1007/s00403-024-03054-5
  66. Ghiasi M, Isazade A, Marhamati T, et al. The efficacy of 308-nm excimer laser with topicalbimatoprost 0.03% for facial vitiligo. J Cosmet Dermatol. 2025;24(2):e70020. doi: 10.1111/jocd.70020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».