Effectiveness of low-temperature argon plasma in the treatment of dermatological diseases: a review
- Authors: Olisova O.Y.1, Ouaili N.1, Kayumova L.N.1, Al Momani M.S.1, Pankov K.A.1, Lomonosov K.M.1
-
Affiliations:
- The First Sechenov Moscow State Medical University (Sechenov University)
- Issue: Vol 28, No 4 (2025)
- Pages: 449-459
- Section: DERMATOLOGY
- URL: https://bakhtiniada.ru/1560-9588/article/view/350473
- DOI: https://doi.org/10.17816/dv679537
- EDN: https://elibrary.ru/VWTIDG
- ID: 350473
Cite item
Abstract
This review systematically summarizes and critically analyzes current evidence on the use of low-temperature atmospheric plasma in dermatology, focusing on its multimodal mechanisms of action and clinical efficacy. Unlike previous studies that examined individual effects of plasma, this review provides an integrative perspective on low-temperature atmospheric plasma as a therapeutic platform combining antimicrobial, regenerative, and immunomodulatory properties. Special attention is given to the paradoxical selectivity of low-temperature atmospheric plasma—its ability to stimulate the regeneration of normal tissues and simultaneously inducing apoptosis in pathologically altered cells.
The article provides an analysis of clinical studies on the use of low-temperature atmospheric plasma in various dermatological conditions (psoriasis, acne, atopic dermatitis, vitiligo, pyoderma gangrenosum), confirming the therapeutic efficacy of the method without significant adverse effects. For the first time, low-temperature atmospheric plasma is considered in the context of skin microbiome modulation, introducing the concept of using this method not only for the elimination of pathogens but also for the restoration of microbial balance. A fundamentally novel aspect is the analysis of low-temperature atmospheric plasma for transdermal drug delivery through the effect of transient changes in cell membrane permeability.
The review also highlights current limitations in standardizing plasma treatment parameters and underscores the need for large-scale randomized studies with the aim to develop personalized treatment protocols. This work provides a theoretical foundation for further research into low-temperature atmospheric plasma as a promising alternative to traditional therapeutic methods in dermatology.
Full Text
##article.viewOnOriginalSite##About the authors
Olga Yu. Olisova
The First Sechenov Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989
MD, Dr. Sci. (Medicine), Professor, corresponding member of the Russian Academy of Sciences
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435Nader Ouaili
The First Sechenov Moscow State Medical University (Sechenov University)
Email: ouaili.doctor@gmail.com
ORCID iD: 0009-0008-5715-8438
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435
Lyailya N. Kayumova
The First Sechenov Moscow State Medical University (Sechenov University)
Email: avestohka2005@inbox.ru
ORCID iD: 0000-0003-0301-737X
SPIN-code: 4391-9553
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435Mohammad S. Al Momani
The First Sechenov Moscow State Medical University (Sechenov University)
Email: Almomanimohamd65@gmail.com
ORCID iD: 0009-0009-9009-2239
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435
Kirill A. Pankov
The First Sechenov Moscow State Medical University (Sechenov University)
Email: herrmannelig15@yandex.ru
ORCID iD: 0000-0002-6458-3191
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435
Konstantin M. Lomonosov
The First Sechenov Moscow State Medical University (Sechenov University)
Email: lamclinic@yandex.ru
ORCID iD: 0000-0002-4580-6193
SPIN-code: 4784-9730
MD, Dr. Sci. (Medicine), Professor
Russian Federation, 4 Bolshaya Pirogovskaya st, bldg 1, Moscow, 119435References
- Gan L, Jiang J, Duan JW, et al. Cold atmospheric plasma applications in dermatology: a systematic review. J Biophotonics. 2021;14(3):e202000415. doi: 10.1002/jbio.202000415
- Braný D, Dvorská D, Halašová E, Škovierová H. Cold atmospheric plasma: a powerful tool for modern medicine. Int J Mol Sci. 2020;21(18):2932. doi: 10.3390/ijms21082932
- Laroussi M. Cold plasma in medicine and healthcare: the new frontier in low-temperature plasma applications. Front Phys. 2020;8:74. doi: 10.3389/fphy.2020.00074
- Tan F, Wang Y, Zhang S, et al. Cold atmospheric plasma delivery for biomedical applications. Mater Today. 2022;54:153–188. doi: 10.1016/j.mattod.2022.01.001
- Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res. 2024;29(1):487. doi: 10.1186/s40001-024-02088-9
- Frolov SA, Kuzminov AM, Vyshegorodtsev DV, et al. Possibilities for the application of low-temperature argon plasma in the treatment of postoperative and long-term non-healing wounds. Russian journal of gastroenterology, hepatology, coloproctology. 2019;29(6):15–21. doi: 10.22416/1382-4376-2019-29-6-15-21 EDN: QLJGGX
- Markevich PS, Filippov AV, Dolgikh RN, et al. Effect of low-temperature argon plasma on the viability and proliferation of fibroblasts in vitro. Bulletin of Pirogov National medical & surgical center. 2024;19(4):51–57. doi: 10.25881/20728255_2024_19_4_51 EDN: LJYURW
- Sharma R, Khanikar RR, Bailung H, Sankaranarayanan K. Review of the cold atmospheric plasma technology application in food, disinfection, and textiles: a way forward for achieving a circular economy. Front Phys. 2022;10:942952. doi: 10.3389/fphy.2022.942952
- Kluge S, Bekeschus S, Bender C, et al. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11(9):e0160667. doi: 10.1371/journal.pone.0160667
- Nima G, Harth-Chu E, Hiers RD, et al. Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Sci Rep. 2021;11(1):23800. doi: 10.1038/s41598-021-03192-0
- Maisch T, Shimizu T, Mitra A, et al. Contact-free cold atmospheric plasma treatment of Deinococcus radiodurans. J Ind Microbiol Biotechnol. 2012;39(9):1367–1375. doi: 10.1007/s10295-012-1137-6
- Mai-Prochnow A, Alam D, Zhou R, et al. Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Processes Polym. 2021;18(1):2000052. doi: 10.1002/ppap.202000052
- Malik S, Gill M, Fridman G, et al. Cold atmospheric plasma reduces demodex count on the face comparably to topical ivermectin, as measured by reflectance confocal microscopy. Exp Dermatol. 2022;31(9):1352–1354. doi: 10.1111/exd.14584
- Ten Bosch L, Habedank B, Siebert D, et al. Cold atmospheric pressure plasma comb—A physical approach for pediculosis treatment. Int J Environ Res Public Health. 2018;16(1):19. doi: 10.3390/ijerph16010019
- Wu M, Dai C, Zeng F. Cellular mechanisms of psoriasis pathogenesis: a systemic review. Clin Cosmet Investig Dermatol. 2023;16:2503–2515. doi: 10.2147/CCID.S420850
- Kim HY, Agrahari G, Lee M, et al. Low-temperature argon plasma regulates skin moisturizing and melanogenesis-regulating markers through yes-associated protein. Int J Mol Sci. 2021;22(4):1895. doi: 10.3390/ijms22041895
- Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated perspectives on keratinocytes and psoriasis: keratinocytes are more than innocent bystanders. Psoriasis (Auckland). 2022;12:73–87. doi: 10.2147/PTT.S327310
- Klebes M, Lademann J, Philipp S, et al. Effects of tissuetolerable plasma on psoriasis vulgaris treatment compare to conventional local treatment: a pilot study. Clin Plasma Med. 2014;2(1):22–27. doi: 10.1016/j.cpme.2013.11.002
- Gareri C, Bennardo L, De Masi G. Use of a new cold plasma tool for psoriasis treatment: a case report. SAGE Open Medical Case Reports. 2020;8:2050313X20922709. doi: 10.1177/2050313X20922709
- Hu Z, Wang T. Beyond skin white spots: vitiligo and associated comorbidities. Fronts Med (Lausanne). 2023;10:1072837. doi: 10.3389/fmed.2023.1072837
- Natarelli N, Nong Y, Maloh J, Sivamani R. Topical integrative approaches to vitiligo: a systematic review. J Integrative Dermatol. 2023 [cited 2023 July 20]. Available at: https://www.jintegrativederm.org/article/84021
- Al-Smadi K, Imran M, Leite-Silva VR, Mohammed Y. Vitiligo: a review of aetiology, pathogenesis, treatment, and psychosocial impact. Cosmetics. 2023;10(3):84. doi: 10.3390/cosmetics10030084
- Zhai S, Xu M, Li Q, et al. Successful treatment of vitiligo with cold atmospheric plasma: activated hydrogel. J Invest Dermatol. 2021;141(11):2710–2719.e6. doi: 10.1016/j.jid.2021.04.019
- Andreeva EN, Sheremetyeva EV, Grigoryan OR, Absatarova YuS. Acne is a disease of civilization. Russian journal of human reproduction. 2020;26(1):6–12. doi: 10.17116/repro2020260116 EDN: SSYABA
- Muzychenko HP. Practical aspects of acne, acne scars. Meditsinskie novosti. 2023;(6):36–40. EDN: WPTQAN
- Mariachiara A, Venturuzzo A, Gelmett A, et al. Cold atmospheric plasma (CAP) as a promising therapeutic option for mild to moderate acne vulgaris: clinical and non-invasive evaluation of two cases. Clin Plasma Med. 2020;19-20:100110. doi: 10.1016/j.cpme.2020.100110
- Cho SB, Kim HJ, Kim H, Yoo KH. Argon plasma: a new approach for the effective treatment of inflammatory acne vulgaris and enlarged pores in Asian patients. Medical Lasers. 2018;7(2):97–101. doi: 10.25289/ML.2018.7.2.97
- Karrer S, Berneburg M, Zeman F, et al. A prospective, randomised, controlled, split-face clinical trial to assess the safety and the efficacy of cold atmospheric plasma in the treatment of acne vulgaris. Applied Sci. 2021;11(23):2–15. doi: 10.3390/app112311181
- Olisova OY, Kayumova LN, Shepeleva AV, et al. Experience of using of low-temperature argon plasma in the treatment of postacne. Russian journal of skin and venereal diseases. 2024;27(6):687–706. doi: 10.17816/dv640815 EDN: GRRBZC
- Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018;73(6):1284–1293. doi: 10.1111/all.13401
- Chieosilapatham P, Kiatsurayanon C, Umehara Y, et al. Keratinocytes: innate immune cells in atopic dermatitis. Clin Exp Immunol. 2021;204(3):296–309. doi: 10.1111/cei.13575
- Bai F, Ran Y, Zhai S, Xia Y. Cold atmospheric plasma: a promising and safe therapeutic strategy for atopic dermatitis. Int Arch Allergy Immunol. 2023;184(12):1184–1197. doi: 10.1159/000531967
- Schmieder SJ, Krishnamurthy K. Pyoderma gangrenosum. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Jul 4].
- Bolgeo T, Maconi A, Gardalini M, et al. The role of cold atmospheric plasma in wound healing processes in critically ill patients. J Pers Med. 2023;13(5):736. doi: 10.3390/jpm13050736
- Zhou J, Sun Z, Wang X, et al. Low-temperature cold plasma promotes wound healing by inhibiting skin inflammation and improving skin microbiome. Front Bioeng Biotechnol. 2025;13:1511259. doi: 10.3389/fbioe.2025.1511259
Supplementary files


