Dual-wavelength copper vapor laser treatment of congenital melanocytic nevi with complex anatomical localization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Melanocytic nevi can affect the complex anatomical localization of the face and the ear area, a very important part of the face from an aesthetic point of view. Treatment methods should provide not only a good cosmetic result but also not disrupt the function of the eye and vision. Surgical excision and non-selective technologies, including radiofrequency exposure, peels, and ablative lasers, can lead to scarring, eyelash loss, and severe functional complications of the organ of vision due to insufficient skin thickness.

AIM: To evaluate the effectiveness of treatment of melanocytic nevi of complex anatomical localization with copper vapor laser radiation.

MATERIALS AND METHODS: Treatment of melanocytic nevi in the periorbital region was carried out in 35 patients (28 women and 7 men), aged 14–65 years. The procedures were performed at an average output power of a copper vapor laser of 0.6–0.8 W, at 511 nm and 578 nm wavelengths, an exposure time of 0.2 s, and a light spot diameter on the skin of 1 mm. The laser treatment was performed without anesthesia. A total of up to four treatments were administered at monthly intervals. The criterion for choosing the energy of laser pulses (selective photohermal laser destruction) was chosen to change the color of the entire surface of the neoplasm to a dark gray color. The duration of skin healing after the procedure was two weeks.

RESULTS: The dual-wavelength copper vapor laser treatment of melanocytic nevi with complex anatomical localization completely removes skin neoplasms in all patients without scarring or recurrences within two years after treatment. According to the results of a computer simulation of selective heating of the pigmented layer, the copper vapor laser is an optimal treatment choice for melanocytic nevi.

CONCLUSION: Clinical data and computer simulation results demonstrate that the treatment of melanocytic nevi of complex anatomical localization using copper vapor laser radiation provides good results and is safer than near-infrared lasers. It makes it possible to use this method in the clinical practice of dermatologists and cosmetologists.

About the authors

Igor V. Ponomarev

P.N. Lebedev Physical Institute

Author for correspondence.
Email: luklalukla@ya.ru
ORCID iD: 0000-0002-3345-3482
SPIN-code: 7643-0784

Cand. Sci. (Physical and Mathematical)

Russian Federation, Moscow

Sergey B. Topchiy

P.N. Lebedev Physical Institute

Email: sergtopchiy@mail.ru
ORCID iD: 0000-0001-6540-9235
SPIN-code: 2426-3858

Cand. Sci. (Physical and Mathematical)

Russian Federation, Moscow

Svetlana V. Klyuchareva

North-Western State Medical University named after I.I. Mechnikov

Email: genasveta@rambler.ru
ORCID iD: 0000-0003-0801-6181
SPIN-code: 9701-1400

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Mariia V. Sakharova

North-Western State Medical University named after I.I. Mechnikov

Email: dr.marvl@mail.ru
ORCID iD: 0009-0000-3462-2666
SPIN-code: 6791-8256
Russian Federation, Saint Petersburg

Alexandra E. Pushkareva

Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics

Email: alexandra.pushkareva@gmail.com
ORCID iD: 0000-0003-0082-984X
SPIN-code: 8117-1266

Cand. Sci. (Technical)

Russian Federation, Saint Petersburg

References

  1. Yus ES, del Cerro M, Simón RS, et al. Unna’s and Miescher’s nevi: Two different types of intradermal nevus. Hypothesis concerning their histogenesis. Am J Dermatopathol. 2007;29(2):141–151. doi: 10.1097/dad.0b013e31803325b2
  2. Witt C., Krengel S. Clinical and epidemiological aspects of subtypes of melanocytic nevi (Flat nevi, Miescher nevi, Unna nevi). Dermatol Online J. 2010;16(1):1. doi: 10.5070/d39bh0r2t8
  3. Karymov ON, Kalashnikova SA, Solov’yeva IO, Polyakova LV. Histotopographic features of facial skin structure. J Anatomy Histopathology. 2017;6(1):29–32. EDN: YHCSAD doi: 10.18499/2225-7357-2017-6-1-29-32
  4. Yarovoy AA, Shatskikh AV, Bulgakova ES, Krivovyaz OS. Results of surgeries for melanocytic nevi of eyelid skin. Russ Ophihalmolog J. 2014;7(1):53–57. EDN: RYGUAH
  5. Zhu L, Jia Y, Wang X. Treatment of eyelid nevus with CO2 laser: A double-edged sword. J Dermatol Treatment. 2015;26(3):257–258. doi: 10.3109/09546634.2014.945894
  6. Parver DL, Dreher RJ, Kohanim S, et al. Ocular injury after laser hair reduction treatment to the eyebrow. Arch Ophthalmol. 2012;130(10):1330–1334. doi: 10.1001/archophthalmol.2012.1988
  7. Pushkareva AE, Ponomarev IV, Isaev AA, Klyuchareva SV. Numerical investigation of vessel heating using a copper vapor laser and a pulsed dye laser in treating vascular skin lesions. Laser Physics. 2018;28(2):025604. doi: 10.1088/1555-6611/aa8cdb
  8. Ponomarev IV, Topchy SB, Pushkareva AE, et al. Treatment of congenital melanocytic nevus in infants and children by a dual-wavelengths copper vapor laser. Vestnik dermatologii i venerologii. 2020;96(3):43–52. EDN: SAWUUI doi: 10.25208/vdv1133
  9. Ponomarev IV, Topchiy SB. Andrusenko YN, Shakina LD. The successful treatment of eyelid intradermal melanocytic nevi (Nevus of Miescher) with the dual-wavelengths copper vapor laser. J Lasers Med Sci. 2021;12(1):e23 doi: 10.34172/jlms.2021.23
  10. Argenziano G, Soyer HP, Chimenti S, et al. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003;48(5):679–693. doi: 10.1067/mjd.2003.281
  11. Argenziano G, Soyer HP. Dermoscopy of pigmented skin lesions: A valuable tool for early. Lancet Oncol. 2001;2(7):443–449. doi: 10.1016/s1470-2045(00)00422-8
  12. Sakai H, Ando Y, Ikinaga K, Tanaka M. Estimating melanin location in the pigmented skin lesions by hue-saturation-lightness color space values of dermoscopic images. J Dermatol. 2017;44(5):490–498. doi: 10.1111/1346-8138.13725
  13. Bray FN, Shah V, Nouri K. Laser treatment of congenital melanocytic nevi: A review of the literature. Lasers Med Sci. 2016;(31):197–204. doi: 10.1007/s10103-015-1833-3
  14. Gu Y, Chang SJ, Ma G, et al. Treatment of congenital melanocytic nevi in the eyelid and periorbital region with ablative lasers. Ann Plastic Surg. 2019;83(4S):S65–S69. doi: 10.1097/sap.0000000000002094
  15. Sardana K, Chakravarty P, Goel K. Optimal management of common acquired melanocytic nevi (moles): Current perspectives. Clin Cosmet Investig Dermatol. 2014;(7):89–103. doi: 10.2147/ccid.s57782
  16. Helsing P, Mørk G, Sveen B. Ruby laser treatment of congenital melanocytic naevi: A pessimistic view. Acta Derm Venereol. 2006;86(3):235–237. doi: 10.2340/00015555-0041
  17. Grevelink JM, van Leeuwen RL, Anderson RR, Byers HR. Clinical and histological responses of congenital melanocytic nevi after single treatment with Q-switched lasers. Arch Dermatol. 1997;133(3):349–353. doi: 10.1001/archderm.133.3.349
  18. Ulrich M, Themstrup L, de Carvalho N, et al. Dynamic optical coherence tomography in dermatology. Dermatology. 2016;232(3):298–311. doi: 10.1159/000444706
  19. Hasegawa K, Fujiwara R, Sato K, et al. Increased blood flow and vasculature in solar lentigo. J Dermatol. 2016;43(10):1209–1213. doi: 10.1111/1346-8138.13458
  20. Hara Y, Yamashita T, Ninomiya M, et al. Vascular morphology in facial solar lentigo assessed by optical coherence tomography angiography. J Dermatol Sci. 2021;102(3):193–195. doi: 10.1016/j.jdermsci.2021.04.001
  21. Regazzetti C, de Donatis GM, Ghorbel HH, et al. Endothelial cells promote pigmentation through endothelin receptor B activation. J Investig Dermatol. 2015;135(12):3096–3104. doi: 10.1038/jid.2015.332
  22. Klyuchareva SV, Ponomarev IV, Topchy SB, et al. Treatment of basal cell cancer in the periorbital area using a pulsed copper vapour. Vestnik dermatologii i venerologii. 2018;94(6):15–21. EDN: ZCPWTJ doi: 10.25208/0042-4609-2018-94-6-15-21

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 5. Diagnosis: Complex nevus of the cheek area (a). Dermoscopy: cobblestone pattern in the central part of the nevus, reticular pattern along the periphery, homogeneous brown areas in the central part (b).

Download (622KB)
3. Fig. 6. Diagnosis: Intradermal nevus of the nasal wing (a). Dermoscopy (×10): cobblestone pattern, round in the central part zone of hypopigmentation (b).

Download (796KB)
4. Fig 7. Female С., 29 years old, congenital complex melanocytic nevus in the left upper and lower eyelid area before treatment.

Download (376KB)
5. Fig. 8. Dermoscopy (×10) performed before treatment: homogeneous structure, brown pigment distributed unevenly with areas of pale brown/brown color.

Download (366KB)
6. Fig. 9. Immediately after a copper vapor laser treatment with a power ratio at wavelengths of 511 nm and 578 nm (3:2). Average power: 0.74 W; exposure time: 0.2 sec. Laser pulses heat the pigment selectively, resulting in its subsequent destruction.

Download (396KB)
7. Fig. 10. Dermoscopy (×10) immediately after laser treatment: selective heating of tissues with laser radiation caused the color of the nevus to change to a dark gray.

Download (428KB)
8. Fig. 11. Six months after treatment: the pathological focus was completely removed; there are no scar changes.

Download (261KB)
9. Fig. 12. Female A., 14 years old, congenital melanocytic nevus in the area of the left earlobe (before the main treatment, the first stage). There is a small area of light skin in the lower part ― trial treatment stage (5 mm).

Download (457KB)
10. Fig. 13. Dermoscopy (×10): cobblestone pattern, with the injured area in the center (homogeneous vascular component). Before the main treatment.

Download (1MB)
11. Fig. 14. After the second stage of laser treatment: the lesion decreased by 30%, and the skin acquired a natural appearance without scars.

Download (374KB)
12. Fig. 15. Dermatoscopy (×10) after the second stage of copper vapor laser treatment: there is an absence of pigment, globules, white scales, and a diffuse vascular component.

Download (397KB)
13. Fig. 16. The fourth stage of treatment: immediately after laser therapy.

Download (486KB)
14. Fig. 17. After treatment, in 4 months: healthy skin is noted; without a scar, only hair growth is preserved.

Download (531KB)
15. Fig. 1. Geometry of the model: Hmin, Hmax: the minimum and maximum distance from the skin surface to the top point of the pigment layer (the depth of location at which its selective heating to temperatures above 65ºC is possible). Dpig is the thickness of the pigment layer.

Download (269KB)
16. Fig. 2. Calculated dependences of temperature on depth in skin tissue containing a pigmented layer with a thickness of Dpig 200 µm, located at a depth of 335 µm, with a melanin content of 15% with fluence E=19 J/cm2 at a copper vapor laser wavelength of 511 nm (green) and at E=15.1 J/cm2 at a copper vapor laser wavelength of 578 nm (yellow). The exposure time was taken to be 0.2 s.

Download (411KB)
17. Fig. 3. Calculated dependences of the maximum and minimum depths of the pigmented layer in the dermis (Hmax and Hmin), at which the pigmented layer with a melanin content of 15% of various thicknesses (Dpig) (a) can be heated to temperatures exceeding 65ºC without overheating the basal layer, on fluence (E) at copper vapor laser wavelengths of 511 nm (green) and 578 nm (orange) (b). The exposure duration was taken to be 0.2 s.

Download (820KB)
18. Fig. 4. Calculated dependences of the maximum and minimum depths of the pigmented layer in the dermis (Hmax and Hmin), at which the pigmented layer with a melanin content of 15% of various thicknesses (Dpig) can be heated to temperatures exceeding 65ºC without overheating the basal layer, from the fluence (E) at the wavelength of the Nd:YAG laser (1064 nm). Exposure time is 0.2 s.

Download (484KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».