Development of an INDEL typing system for ctx+ strains of Vibrio cholerae from the seventh pandemic

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The seventh cholera pandemic is accompanied by the formation of Vibrio cholerae clones with new genetic properties, including those with the ability to spread pandemically and cause diseases with a more severe clinical course. The widespread distribution of such genetic variants of Vibrio cholerae and the possibility of their introduction into the territory of the Russian Federation necessitate constant comprehensive monitoring using modern molecular genetic technologies.

AIM: To improve INDEL typing of ctx+ strains of V. cholerae of the seventh pandemic by using additional INDEL loci.

Materials and methods: A bioinformatic analysis of 2105 full-genome sequences of toxigenic ctxAB+tcpA+ strains of Vibrio cholerae O1 El Tor from open databases was carried out in order to search for INDEL loci for molecular typing. Based on the convenience criterion for allele size identification, eight INDEL loci were selected. Three loci have been described previously, and five were identified as a result of this work. The designed primers formed amplicons ranging in size from 67 to 390 base pairs, which made it possible to confidently identify them during gel electrophoresis.

Results: The distribution of alleles formed 11 unique INDEL clusters, which we designated A-K. Based on the number of strains within the clusters, three types of clusters were identified: major (A, B and C) made up 89% of the total number of sequences studied, intermediate (D, E, F, G and H) 10.5% of the genomes. Three minor clusters (I, J and K) were represented by single strains. Four clusters united strains isolated in the 20th century (A — in 1941, F — in 1957, G — in 1993, E — in 1999), and seven clusters — in the 21st century in the period from 2003 to 2016. In the period from 2019 to 2023, representatives of INDEL clusters were active: A, B, D and E.

ConclusionS: The study of the timing of circulation suggested that representatives of different clusters have different epidemic potential, which was manifested in the absence of isolation of strains of some clusters in recent years. A comparative study of INDEL typing with SNP typing in the in silico analysis of 378 genomes of strains isolated on the African continent indicates that the proposed INDEL typing method is not inferior to SNP typing in terms of resolution.

作者简介

Sergey Vodopyanov

Rostov-on-Don Plague Control Researsh Institute

编辑信件的主要联系方式.
Email: serge100v@gmail.com
ORCID iD: 0000-0003-4336-0439
SPIN 代码: 4672-9310
Scopus 作者 ID: 6701686549

MD, Dr. Sci. (Medicine)

俄罗斯联邦, 117/40 M. Gor’kogo street, 344002 Rostov-on-Don

Alexey Vodopyanov

Rostov-on-Don Plague Control Researsh Institute

Email: vodopyanov_as@antiplague.ru
ORCID iD: 0000-0002-9056-3231
SPIN 代码: 7319-3037

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 117/40 M. Gor’kogo street, 344002 Rostov-on-Don

参考

  1. Ramamurthy T, Mutreja A, Weill FX, et al. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholera. Front Public Health. 2019;7:203. doi: 10.3389/fpubh.2019.00203 Erratum in: Front Public Health. 2019;7:237. doi: 10.3389/fpubh.2019.00237
  2. Smirnova NI, Rybalchenko DA, Lozovskiy YV, et al. Analysis of changes in the genome of Vibrio cholerae O1 El Tor genovariants during the current period of the cholera pandemic. Journal of Microbiology, Epidemiology and Immunobiology. 2023;100(5):346–357. (In Russ.) doi: 10.36233/0372-9311-389
  3. Jubyda FT, Nahar KS, Barman I, et al. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathog. 2023;15(1):17. doi: 10.1186/s13099-023-00537-0
  4. Onishchenko GG, Moskvitina EA, Vodop’janov AS, et al. Retrospective Molecular-Epidemiological Analysis of Cholera Epidemic in the Republic of Dagestan in 1994. Problems of Particularly Dangerous Infections. 2016;(4):33–41. (In Russ.) doi: 10.21055/0370-1069-2016-4-33-41
  5. Noskov AK, Kruglikov VD, Lopatin AA, et al. Results of cholera monitoring in administrative territories of Russia from 2013 to 2019. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(2):163–175. doi: 10.36233/0372-9311-56
  6. Mishankin BH, Vodopyanov AS, Lomov YuM, et al. Retrospective VNTR-Analysis of Genotypes of Vibrio Cholerae O1 Strains Isolated, During the 7th Cholera Pandemic, in Rostov Region. Molecular Genetics, Microbiology and Virology. 2004;(4):28. (In Russ.) EDN: OJXXPF
  7. Danin-Poleg Y, Cohen LA, Gancz H, et al. Vibrio cholerae Strain Typing and Phylogeny Study Based on Simple Sequence Repeats. J Clin Microbiol. 2007;45(3):736–746. doi: 10.1128/jcm.01895-06
  8. Lam C, Octavia S, Reeves PR, Lan R. Multi-locus variable number tandem repeat analysis of 7th pandemic Vibrio cholerae. BMC Microbiol. 2012;12:82. doi: 10.1186/1471-2180-12-82
  9. Smirnova NI, Kul’shant’ TA, Krasnov YM. MLVA Typing of Clinical Vibrio Cholerae Strains Isolated During Different Periods of the Current Cholera Pandemic. Molecular Genetics, Microbiology and Virology. 2015;30(1):15–22. (In Russ.) EDN: TEWRYN
  10. Bwire G, Sack DA, Almeida M, et al. Molecular characterization of Vibrio cholerae responsible for cholera epidemics in Uganda by PCR, MLVA and WGS. PLoS Negl Trop Dis. 2018;12(6):e0006492. doi: 10.1371/journal.pntd.0006492
  11. George CM, Hasan K, Monira S, et al. A prospective cohort study comparing household contact and water Vibrio cholerae isolates in households of cholera patients in rural Bangladesh. PLoS Negl Trop Dis. 2018;12(7):e0006641. doi: 10.1371/journal.pntd.0006641
  12. Mironova LV, Khunkheeva ZhYu, Basov EA, et al. Analysis of Vibrio cholerae Genotype Stability at Low Temperature and Nutrients Deficiency. Problems of Particularly Dangerous Infections. 2016;(3):52–56. (In Russ.) doi: 10.21055/0370-1069-2016-3-52-56
  13. Rashid MU, Almeida M, Azman AS, et al. Comparison of inferred relatedness based on multilocus variable-number tandem-repeat analysis and whole genome sequencing of Vibrio cholerae O1. FEMS Microbiol Lett. 2016;363(12):fnw116. doi: 10.1093/femsle/fnw116
  14. Ambroise J, Irenge LM, Durant JF, et al. Backward compatibility of whole genome sequencing data with MLVA typing using a new MLVAtype shiny application for Vibrio cholerae. PLoS One. 2019;14(12):e0225848. doi: 10.1371/journal.pone.0225848
  15. Mwaba J, Debes AK, Murt KN, et al. Three transmission events of Vibrio cholerae O1 into Lusaka, Zambia. BMC Infect Dis. 2021;21(1):570. doi: 10.1186/s12879-021-06259-5
  16. Vodop’yanov AS, Vodop’yanov SO, Oleynikov IP, Mishan’kin BN. INDEL-genotyping of Vibrio cholerae strains. Epidemiology and Infectious Diseases. 2017;22(4):195–200. (In Russ.) doi: 10.17816/EID40978
  17. Vodopyanov AS, Vodopyanov SO, Oleynikov IP, et al. INDEL- и VNTR-typing Vibrio cholerae strains, isolated in 2013 from the environment objects in the Russian Federation. Public Health and Life Environment — PH&LE. 2015;(5(266)):41–44. (In Russ.) EDN: UCHPMN
  18. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi: 10.1089/cmb.2012.0021
  19. Benamrouche N, Belkader C, Njamkepo E, et al. Outbreak of Imported Seventh Pandemic Vibrio cholerae O1 El Tor, Algeria, 2018. Emerging Infectious Diseases. 2022;28(6):1241–1245. doi: 10.3201/eid2806.212451
  20. Vodop’yanov AS, Vodop’yanov SO, Oleynikov IP, Pisanov RV. Identification of Vibrio cholerae Strains of the «Haitian» Group by PCR Based on INDEL-Typing. Journal of Microbiology, Epidemiology and Immunobiology. 2020;97(3):265–270. (In Russ.) doi: 10.36233/0372-9311-2020-97-3-9
  21. Monakhova EV, Ghosh A, Mutreja A, Weill F, Ramamurthy T. Endemic Cholera in India and Imported Cholera in Russia: What is Common? Problems of Particularly Dangerous Infections. 2020;(3):17–26. doi: 10.21055/0370-1069-2020-3-17-26
  22. Mutreja A, Kim DW, Thomson NR, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011;477(7365):462–465. doi: 10.1038/nature10392
  23. Monir MM, Islam MT, Mazumder R, et al. Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh. Nat Commun. 2023;14(1):1154. doi: 10.1038/s41467-023-36687-7
  24. Weill FX, Domman D, Njamkepo E, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358(6364): 785–789. doi: 10.1126/science.aad5901
  25. Weill FX, Domman D, Njamkepo E, et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen. Nature. 2019;565(7738):230–233. doi: 10.1038/s41586-018-0818-3 Erratum in: Nature. 2019;566(7745):E14. doi: 10.1038/s41586-019-0966-0
  26. Smith AM, Sekwadi P, Erasmus LK, et al. Imported Cholera Cases, South Africa, 2023. Emerg Infect Dis. 2023;29(8):1687–1690. doi: 10.3201/eid2908.230750
  27. Kuleshov KV, Vodop’ianov SO, Dedkov VG, et al. Travel-Associated Vibrio cholerae O1 El Tor, Russia. Emerging Infectious Diseases. 2016;22(11):2006–2008. doi: 10.3201/eid2211.151727

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Appearance of the geographic information system “INDEL genotypes of V. cholerae O1 strains”. The result of a query on the geographical distribution of strains of the major INDEL cluster A is presented. The circles show the places where the strains were isolated, the number in the circle corresponds to the number of isolated strains. The color of the marker and its shape reflect the number of isolated cultures: single strains — with an star; from 2 to 10 — green circle; from 10 to 100 — yellow circle, over 100 — orange circle.

下载 (1MB)

版权所有 © Eco-vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».