Role of microbiome in development of systemic inflammatory response syndrome and sepsis (review)
- Authors: Khomyakova T.I.1, Khomyakov Y.N.1, Makarova O.V.1
-
Affiliations:
- Avtsyn Research Institute of Human Morphology
- Issue: Vol 28, No 3 (2023)
- Pages: 167-182
- Section: Reviews
- URL: https://bakhtiniada.ru/1560-9529/article/view/131267
- DOI: https://doi.org/10.17816/EID451025
- ID: 131267
Cite item
Abstract
Sepsis is a life-threatening organ dysfunction caused by a disturbed response to infection. Its development is preceded by systemic inflammatory response syndrome, which is the overall inflammatory response of the body to severe lesions. The role of opportunistic pathogens in the development of systemic inflammatory response syndrome and sepsis may be known, but the value of the intestinal microbiome remains underestimated in this context.
Experimental models are widely employed to study the role of the microbiome in the development of sepsis. Animal models of sepsis are created by disrupting the barrier function of the host intestine through cecal ligation/puncture, installation of an ascending bowel stent, and intraperitoneal feces injection. Toxemia is reproduced by the injection of lipopolysaccharides, peptidoglycans, lipoteichoic acid, CpG DNA, zymosan, and synthetic lipopeptides.
The review systematized data on the role of the cell wall or membrane components of gram-positive and gram-negative bacteria, which are representatives of the intestinal microbiome in the pathogenesis of systemic inflammatory response syndrome and sepsis.
Full Text
##article.viewOnOriginalSite##About the authors
Tatyana I. Khomyakova
Avtsyn Research Institute of Human Morphology
Author for correspondence.
Email: tatkhom@yandex.ru
ORCID iD: 0000-0003-3451-1952
MD, Cand. Sci. (Med.)
Russian Federation, 3 Tsyurupa street, 117418 MoscowYuri N. Khomyakov
Avtsyn Research Institute of Human Morphology
Email: khomyakovyuri@yandex.ru
ORCID iD: 0000-0003-0540-252X
Scopus Author ID: 6602074139
ResearcherId: ACY-0748-2022
MD, Cand. Sci. (Med.), Dr. Sci. (Biol.)
Russian Federation, 3 Tsyurupa street, 117418 MoscowOlga V. Makarova
Avtsyn Research Institute of Human Morphology
Email: makarov.olga2013@yandex.ru
ORCID iD: 0000-0001-8581-107X
MD, Dr. Sci. (Med.), Professor
Russian Federation, 3 Tsyurupa street, 117418 MoscowReferences
- Fleischmann C, Scherag A, Adhikari NK, et al. International forum of acute care trialists. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272. doi: 10.1164/rccm.201504-0781OC
- Dugani S, Veillard J, Kissoon N. Reducing the global burden of sepsis. CMAJ. 2017;189(1):E2–E3. doi: 10.1503/cmaj.160798
- Rybakova MG. Sepsis: From systemic inflammatory reaction syndrome to organ dysfunction. Arch Pathol. 2021;83(1):67–72. (In Russ). doi: 10.17116/patol20218301167
- Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
- Mishnevo D, Grinberg LM, Zairatiants OV. Actual problems of sepsis pathology: 25 years in search of consensus. Arch Pathol. 2016;78(6):3–8. (In Russ). doi: 10.17116/patol20167863-8
- Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence. 2014;5(1):213–218. doi: 10.4161/viru.27024
- Lilley E, Armstrong R, Clark N, et al. Refinement of animal models of sepsis and septic shock. Shock. 2015;43(4):304–316. doi: 10.1097/SHK.0000000000000318
- Osuchowski MF, Ayala A, Bahrami S, et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Intensive Care Med Exp. 2018;6(1):26. doi: 10.1186/s40635-018-0189-y
- Gutsmann T, Schromm AB, Brandenburg K. The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol. 2007;297(5):341–352. doi: 10.1016/j.ijmm.2007.03.004
- Fink MP. Animal models of sepsis. Virulence. 2014;5(1):143–153. doi: 10.4161/viru.26083
- Vogel SN, Moore RN, Sipe JD, Rosenstreich DL. BCG-induced enhancement of endotoxin sensitivity in C3H/HeJ mice. I. In vivo studies. J Immunol. 1980;124(4):2004–2009.
- Khomyakova TI, Khomyakov YN. From the term «dysbiosis» to the concept of «pathobiom»: The evolution of views. Treatment Prevention. 2022;12(4):50–56. (In Russ).
- Godovalov AP. Microbial associations of human biotopes as a factor determining the occurrence of polymicrobial infections. Epidemiol Inf Dis. 2023;28(2):110–117. (In Russ). doi: 10.17816/EID317442
- Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi: 10.1038/s41579-018-0036-x
- Massey W, Brown JM. The gut microbial endocrine organ in type 2 diabetes. Endocrinology. 2021;162(2):bqaa235. doi: 10.1210/endocr/bqaa235
- Wang L, Wang S, Zhang Q, et al. The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed. 2022;3(1):30. doi: 10.1186/s43556-022-00091-2
- Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022;34(11): 1700–1718. doi: 10.1016/j.cmet.2022.09.017
- Beloborodova NI. Integration of human metabolism and its microbiome in critical States. General Reanimatol. 2012;8(4):42–54. (In Russ). doi: 10.15360/1813-9779-2012-4-42
- Chernevskaya EA, Beloborodova NV. Gut microbiota in critical conditions (review). General Reanimatol. 2018;14(5):96–119. (In Russ). doi: 10.15360/1813-9779-2018-5-96-119
- Marshall JC. Gastrointestinal flora and its alterations in critical illness. Curr Opin Clin Nutr Metab Care. 1999;2(5):405–411. doi: 10.1097/00075197-199909000-00009
- Zhou A, Yuan Y, Yang M, et al. Crosstalk between the gut microbiota and epithelial cells under physiological and infectious conditions. Front Cell Infect Microbiol. 2022;(12):832672. doi: 10.3389/fcimb.2022.832672
- Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23(4):473–480. doi: 10.1016/j.coi.2011.07.010
- Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol. 2020;18(9): 521–538. doi: 10.1038/s41579-020-0367-2
- Zhao S, Lieberman TD, Poyet M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25(5):656–667.e8. doi: 10.1016/j.chom.2019.03.007
- Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi: 10.1126/science.1237439
- Feliziani S, Marvig RL, Luján AM, et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 2014;10(10):e1004651. doi: 10.1371/journal.pgen.1004651
- Rice TA, Bielecka AA, Nguyen MT, et al. Interspecies commensal interactions have nonlinear impacts on host immunity. Cell Host Microbe. 2022;30(7):988–1002.e6. doi: 10.1016/j.chom.2022.05.004
- Ohanyan KA, Arzhanova ON, Zamorskaya L, Savicheva AM. Enterococci and their role in perinatal pathology. J Art Women’s Dis. 2015;(5):49–54. (In Russ).
- Griffith SJ, Nathan C, Selander RK, et al. The epidemiology of Pseudomonas aeruginosa in oncology patients in a general hospital. J Infect Dis. 1989;160(6):1030–1036. doi: 10.1093/infdis/160.6.1030
- Hansen F, Johansen HK, Østergaard C, et al. Characterization of carbapenem nonsusceptible Pseudomonas aeruginosa in Denmark: A nationwide, prospective study. Microb Drug Resist. 2014;20(1): 22–29. doi: 10.1089/mdr.2013.0085
- Laughlin RS, Musch MW, Hollbrook CJ, et al. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg. 2000;232(1):133–142. doi: 10.1097/00000658-200007000-00019
- Zhao S, Lieberman TD, Poyet M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25(5): 656–667.e8. doi: 10.1016/j.chom.2019.03.007
- Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019;25(11):1728–1732. doi: 10.1038/s41591-019-0626-9
- Zhu XX, Zhang WW, Wu CH, et al. The novel role of metabolism-associated molecular patterns in sepsis. Front Cell Infect Microbiol. 2022;(12):915099. doi: 10.3389/fcimb.2022.915099
- Dammermann W, Wollenberg L, Bentzien F, et al. Toll-like receptor 2 agonists lipoteichoic acid and peptidoglycan are able to enhance antigen specific IFNγ release in whole blood during recall antigen responses. J Immunol Methods. 2013;396(1-2):107–115. doi: 10.1016/j.jim.2013.08.004
- Augusto LA, Bourgeois-Nicolaos N, Breton A, et al. Presence of 2-hydroxymyristate on endotoxins is associated with death in neonates with Enterobacter cloacae complex septic shock. Science. 2021;24(8):102916. doi: 10.1016/j.isci.2021.102916
- Schumann RR, Zweigner J. A novel acute-phase marker: Lipopolysaccharide binding protein (LBP). Clin Chem Lab Med. 1999;37(3):271–274. doi: 10.1515/CCLM.1999.047
- Wegscheider K, Schumann RR. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes. Blood. 2001;98(13):3800–3808. doi: 10.1182/blood.v98.13.3800
- Zvyagin AA, Demidova VS, Smirnov GV. Biological markers in the diagnosis and treatment of sepsis (literature review). Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2016; 3(2):20–23. (In Russ). doi: 10.17650/2408-9613-2016-3-2-19-23
- Brown S, Santa Maria JP, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;(67):313–336. doi: 10.1146/annurev-micro-092412-155620
- Percy MG, Gründling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;(68):81–100. doi: 10.1146/annurev-micro-091213-112949
- Chee Wezen X, Chandran A, Eapen RS, et al. Structure-Based discovery of lipoteichoic acid synthase inhibitors. J Chem Inf Model. 2022;62(10):2586–2599. doi: 10.1021/acs.jcim.2c00300
- Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci. 2019;20(18):4341. doi: 10.3390/ijms20184341
- Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002;2(3):171–179. doi: 10.1016/s1473-3099(02)00226-8
- Richter SG, Elli D, Kim HK, et al. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc Natl Acad Sci USA. 2013;110(9):3531–3536. doi: 10.1073/pnas.1217337110
- Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol. 2014;196(6):1133–1142. doi: 10.1128/JB.01155-13
- Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun. 2021;(92):184–192. doi: 10.1016/j.bbi.2020.12.008
- Kubicek-Sutherland JZ, Vu DM, Mendez HM, et al. Detection of lipid and amphiphilic biomarkers for disease diagnostics. Biosensors (Basel). 2017;7(3):25. doi: 10.3390/bios7030025
- Middelveld RJ, Alving K. Synergistic septicemic action of the gram-positive bacterial cell wall components peptidoglycan and lipoteichoic acid in the pig in vivo. Shock. 2000;13(4):297–306. doi: 10.1097/00024382-200004000-00008
- Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol. 2014;196(6):1133–1142. doi: 10.1128/JB.01155-13
- Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;(4):333. doi: 10.3389/fimmu.2013.00333
- Said-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J. 2012;35(6):437–449. doi: 10.4103/2319-4170.104408
- Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol. 2018;18(4):243–254. doi: 10.1038/nri.2017.136
- Wolf AJ, Reyes CN, Liang W, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166(3):624–636. doi: 10.1016/j.cell.2016.05.076
- Jeong JH, Jang S, Jung BJ, et al. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology. 2015;220(4):460–466. doi: 10.1016/j.imbio.2014.11.002
- Cox KH, Cox ME, Woo-Rasberry V, Hasty DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One. 2012;7(10):e47333. doi: 10.1371/journal.pone.0047333
- Kim HG, Kim NR, Gim MG, et al. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-production in THP-1 cells and endotoxin shock in mice. J Immunol. 2008;180(4):2553–2561. doi: 10.4049/jimmunol.180.4.2553
- Yipp BG, Andonegui G, Howlett CJ. Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versuslipoteichoic acid. J Immunol. 2002;168(9):4650–4658. doi: 10.4049/jimmunol.168.9.4650
- Sharma P, Dube D, Sinha M, et al. Structural insights into the dual strategy of recognition by peptidoglycan recognition protein, PGRP-S: Structure of the ternary complex of PGRP-S with lipopolysaccharide and stearic acid. PLoS One. 2013;8(1):e53756. doi: 10.1371/journal.pone.0053756
- Van Langevelde P, van Dissel JT, Ravensbergen E, et al. Antibiotic-induced release of lipoteichoic acid and peptidoglycan from staphylococcus aureus: Quantitative measurements and biological reactivities. Agents Chemother. 1998;42(12):3073–3078. doi: 10.1128/AAC.42.12.3073
- Imai J, Kitamoto S, Sugihara K, et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol. 2019;12(3):632–643. doi: 10.1038/s41385-019-0138-4
- Naseer N, Egan MS, Ruiz VM, et al. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog. 2022;18(1):e1009718. doi: 10.1371/journal.ppat.1009718
- Xue Y, Tuipulotu ED, Tan WH, et al. Emerging activators and regulators ofinflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035–1052. doi: 10.1016/j.it.2019.09.005
- Grimaldi E, Donnarumma G, Perfetto B, et al. Proinflammatory signal transduction pathway induced by Shigella flexneri porins in caco-2 cells. Braz J Microbiol. 2009;40(3):701–713. doi: 10.1590/S1517-838220090003000036
- Mukhopadhaya A, Mahalanabis D, Chakrabarti MK. Role of Shigella flexneri 2a 34 kDa outer membrane protein in induction of protective immune response. Vaccine. 2006;24(33-34):6028–6036. doi: 10.1016/j.vaccine.2006.03.026
- Sugimoto N, Leu H, Inoue N, et al. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci. 2015;22(1):78. doi: 10.1186/s12929-015-0184-5
- Keskinidou C, Lotsios NS, Vassiliou AG, et al. The interplay between aquaporin-1 and the hypoxia-inducible factor 1α in a lipopolysaccharide-induced lung injury model in human pulmonary microvascular endothelial cells. Int J Mol Sci. 2022;23(18):10588. doi: 10.3390/ijms231810588
- Zhu Y, Wang Y, Teng W, et al. Role of Aquaporin-3 in intestinal injury induced by sepsis. Biol Pharm Bull. 2019;42(10):1641–1650. doi: 10.1248/bpb.b19-00073
- Takeuchi O, Kawai T, Mühlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001;13(7):933–940. doi: 10.1093/intimm/13.7.933
- Fang H, Wang Y, Deng J, et al. Sepsis-induced gut dysbiosis mediates the susceptibility to sepsis-associated encephalopathy in mice. Systems. 2022;7(3):e0139921. doi: 10.1128/msystems.01399-21
- Wang L, Lin F, Ren M, et al. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol. 2021;(100):108116. doi: 10.1016/j.intimp.2021.108116
- Johannes HM, Abraham PR, van Barreveld E, et al., Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect Immun. 2003;71(6):3280–3284. doi: 10.1128/IAI.71.6.3280-3284.2003
- Levine DM, Parker TS, Donnelly TM, et al. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA. 1993;90(24):12040–12044. doi: 10.1073/pnas.90.24.12040
- Vreugdenhil AC, Snoek AM, van Veer C, et al. LPS-binding protein circulates in association with apoB-containing lipoproteins and enhances endotoxin-LDL/VLDL interaction. J Clin Invest. 2001;107(2):225–234. doi: 10.1172/JCI10832
- Leung AK, Genga KR, Topchiy E, et al. Reduced proprotein convertase subtilisin/kexin 9 (PCSK9) function increases lipoteichoic acid clearance and improves outcomes in Gram positive septic shock patients. Sci Rep. 2019;9(1):10588. doi: 10.1038/s41598-019-46745-0
- Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x
Supplementary files
