Role of microbiome in development of systemic inflammatory response syndrome and sepsis (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sepsis is a life-threatening organ dysfunction caused by a disturbed response to infection. Its development is preceded by systemic inflammatory response syndrome, which is the overall inflammatory response of the body to severe lesions. The role of opportunistic pathogens in the development of systemic inflammatory response syndrome and sepsis may be known, but the value of the intestinal microbiome remains underestimated in this context.

Experimental models are widely employed to study the role of the microbiome in the development of sepsis. Animal models of sepsis are created by disrupting the barrier function of the host intestine through cecal ligation/puncture, installation of an ascending bowel stent, and intraperitoneal feces injection. Toxemia is reproduced by the injection of lipopolysaccharides, peptidoglycans, lipoteichoic acid, CpG DNA, zymosan, and synthetic lipopeptides.

The review systematized data on the role of the cell wall or membrane components of gram-positive and gram-negative bacteria, which are representatives of the intestinal microbiome in the pathogenesis of systemic inflammatory response syndrome and sepsis.

About the authors

Tatyana I. Khomyakova

Avtsyn Research Institute of Human Morphology

Author for correspondence.
Email: tatkhom@yandex.ru
ORCID iD: 0000-0003-3451-1952

MD, Cand. Sci. (Med.)

Russian Federation, 3 Tsyurupa street, 117418 Moscow

Yuri N. Khomyakov

Avtsyn Research Institute of Human Morphology

Email: khomyakovyuri@yandex.ru
ORCID iD: 0000-0003-0540-252X
Scopus Author ID: 6602074139
ResearcherId: ACY-0748-2022

MD, Cand. Sci. (Med.), Dr. Sci. (Biol.)

Russian Federation, 3 Tsyurupa street, 117418 Moscow

Olga V. Makarova

Avtsyn Research Institute of Human Morphology

Email: makarov.olga2013@yandex.ru
ORCID iD: 0000-0001-8581-107X

MD, Dr. Sci. (Med.), Professor

Russian Federation, 3 Tsyurupa street, 117418 Moscow

References

  1. Fleischmann C, Scherag A, Adhikari NK, et al. International forum of acute care trialists. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272. doi: 10.1164/rccm.201504-0781OC
  2. Dugani S, Veillard J, Kissoon N. Reducing the global burden of sepsis. CMAJ. 2017;189(1):E2–E3. doi: 10.1503/cmaj.160798
  3. Rybakova MG. Sepsis: From systemic inflammatory reaction syndrome to organ dysfunction. Arch Pathol. 2021;83(1):67–72. (In Russ). doi: 10.17116/patol20218301167
  4. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  5. Mishnevo D, Grinberg LM, Zairatiants OV. Actual problems of sepsis pathology: 25 years in search of consensus. Arch Pathol. 2016;78(6):3–8. (In Russ). doi: 10.17116/patol20167863-8
  6. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence. 2014;5(1):213–218. doi: 10.4161/viru.27024
  7. Lilley E, Armstrong R, Clark N, et al. Refinement of animal models of sepsis and septic shock. Shock. 2015;43(4):304–316. doi: 10.1097/SHK.0000000000000318
  8. Osuchowski MF, Ayala A, Bahrami S, et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Intensive Care Med Exp. 2018;6(1):26. doi: 10.1186/s40635-018-0189-y
  9. Gutsmann T, Schromm AB, Brandenburg K. The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol. 2007;297(5):341–352. doi: 10.1016/j.ijmm.2007.03.004
  10. Fink MP. Animal models of sepsis. Virulence. 2014;5(1):143–153. doi: 10.4161/viru.26083
  11. Vogel SN, Moore RN, Sipe JD, Rosenstreich DL. BCG-induced enhancement of endotoxin sensitivity in C3H/HeJ mice. I. In vivo studies. J Immunol. 1980;124(4):2004–2009.
  12. Khomyakova TI, Khomyakov YN. From the term «dysbiosis» to the concept of «pathobiom»: The evolution of views. Treatment Prevention. 2022;12(4):50–56. (In Russ).
  13. Godovalov AP. Microbial associations of human biotopes as a factor determining the occurrence of polymicrobial infections. Epidemiol Inf Dis. 2023;28(2):110–117. (In Russ). doi: 10.17816/EID317442
  14. Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi: 10.1038/s41579-018-0036-x
  15. Massey W, Brown JM. The gut microbial endocrine organ in type 2 diabetes. Endocrinology. 2021;162(2):bqaa235. doi: 10.1210/endocr/bqaa235
  16. Wang L, Wang S, Zhang Q, et al. The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed. 2022;3(1):30. doi: 10.1186/s43556-022-00091-2
  17. Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022;34(11): 1700–1718. doi: 10.1016/j.cmet.2022.09.017
  18. Beloborodova NI. Integration of human metabolism and its microbiome in critical States. General Reanimatol. 2012;8(4):42–54. (In Russ). doi: 10.15360/1813-9779-2012-4-42
  19. Chernevskaya EA, Beloborodova NV. Gut microbiota in critical conditions (review). General Reanimatol. 2018;14(5):96–119. (In Russ). doi: 10.15360/1813-9779-2018-5-96-119
  20. Marshall JC. Gastrointestinal flora and its alterations in critical illness. Curr Opin Clin Nutr Metab Care. 1999;2(5):405–411. doi: 10.1097/00075197-199909000-00009
  21. Zhou A, Yuan Y, Yang M, et al. Crosstalk between the gut microbiota and epithelial cells under physiological and infectious conditions. Front Cell Infect Microbiol. 2022;(12):832672. doi: 10.3389/fcimb.2022.832672
  22. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23(4):473–480. doi: 10.1016/j.coi.2011.07.010
  23. Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol. 2020;18(9): 521–538. doi: 10.1038/s41579-020-0367-2
  24. Zhao S, Lieberman TD, Poyet M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25(5):656–667.e8. doi: 10.1016/j.chom.2019.03.007
  25. Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi: 10.1126/science.1237439
  26. Feliziani S, Marvig RL, Luján AM, et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 2014;10(10):e1004651. doi: 10.1371/journal.pgen.1004651
  27. Rice TA, Bielecka AA, Nguyen MT, et al. Interspecies commensal interactions have nonlinear impacts on host immunity. Cell Host Microbe. 2022;30(7):988–1002.e6. doi: 10.1016/j.chom.2022.05.004
  28. Ohanyan KA, Arzhanova ON, Zamorskaya L, Savicheva AM. Enterococci and their role in perinatal pathology. J Art Women’s Dis. 2015;(5):49–54. (In Russ).
  29. Griffith SJ, Nathan C, Selander RK, et al. The epidemiology of Pseudomonas aeruginosa in oncology patients in a general hospital. J Infect Dis. 1989;160(6):1030–1036. doi: 10.1093/infdis/160.6.1030
  30. Hansen F, Johansen HK, Østergaard C, et al. Characterization of carbapenem nonsusceptible Pseudomonas aeruginosa in Denmark: A nationwide, prospective study. Microb Drug Resist. 2014;20(1): 22–29. doi: 10.1089/mdr.2013.0085
  31. Laughlin RS, Musch MW, Hollbrook CJ, et al. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg. 2000;232(1):133–142. doi: 10.1097/00000658-200007000-00019
  32. Zhao S, Lieberman TD, Poyet M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25(5): 656–667.e8. doi: 10.1016/j.chom.2019.03.007
  33. Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019;25(11):1728–1732. doi: 10.1038/s41591-019-0626-9
  34. Zhu XX, Zhang WW, Wu CH, et al. The novel role of metabolism-associated molecular patterns in sepsis. Front Cell Infect Microbiol. 2022;(12):915099. doi: 10.3389/fcimb.2022.915099
  35. Dammermann W, Wollenberg L, Bentzien F, et al. Toll-like receptor 2 agonists lipoteichoic acid and peptidoglycan are able to enhance antigen specific IFNγ release in whole blood during recall antigen responses. J Immunol Methods. 2013;396(1-2):107–115. doi: 10.1016/j.jim.2013.08.004
  36. Augusto LA, Bourgeois-Nicolaos N, Breton A, et al. Presence of 2-hydroxymyristate on endotoxins is associated with death in neonates with Enterobacter cloacae complex septic shock. Science. 2021;24(8):102916. doi: 10.1016/j.isci.2021.102916
  37. Schumann RR, Zweigner J. A novel acute-phase marker: Lipopolysaccharide binding protein (LBP). Clin Chem Lab Med. 1999;37(3):271–274. doi: 10.1515/CCLM.1999.047
  38. Wegscheider K, Schumann RR. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes. Blood. 2001;98(13):3800–3808. doi: 10.1182/blood.v98.13.3800
  39. Zvyagin AA, Demidova VS, Smirnov GV. Biological markers in the diagnosis and treatment of sepsis (literature review). Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2016; 3(2):20–23. (In Russ). doi: 10.17650/2408-9613-2016-3-2-19-23
  40. Brown S, Santa Maria JP, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;(67):313–336. doi: 10.1146/annurev-micro-092412-155620
  41. Percy MG, Gründling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;(68):81–100. doi: 10.1146/annurev-micro-091213-112949
  42. Chee Wezen X, Chandran A, Eapen RS, et al. Structure-Based discovery of lipoteichoic acid synthase inhibitors. J Chem Inf Model. 2022;62(10):2586–2599. doi: 10.1021/acs.jcim.2c00300
  43. Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci. 2019;20(18):4341. doi: 10.3390/ijms20184341
  44. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002;2(3):171–179. doi: 10.1016/s1473-3099(02)00226-8
  45. Richter SG, Elli D, Kim HK, et al. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc Natl Acad Sci USA. 2013;110(9):3531–3536. doi: 10.1073/pnas.1217337110
  46. Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol. 2014;196(6):1133–1142. doi: 10.1128/JB.01155-13
  47. Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun. 2021;(92):184–192. doi: 10.1016/j.bbi.2020.12.008
  48. Kubicek-Sutherland JZ, Vu DM, Mendez HM, et al. Detection of lipid and amphiphilic biomarkers for disease diagnostics. Biosensors (Basel). 2017;7(3):25. doi: 10.3390/bios7030025
  49. Middelveld RJ, Alving K. Synergistic septicemic action of the gram-positive bacterial cell wall components peptidoglycan and lipoteichoic acid in the pig in vivo. Shock. 2000;13(4):297–306. doi: 10.1097/00024382-200004000-00008
  50. Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol. 2014;196(6):1133–1142. doi: 10.1128/JB.01155-13
  51. Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;(4):333. doi: 10.3389/fimmu.2013.00333
  52. Said-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J. 2012;35(6):437–449. doi: 10.4103/2319-4170.104408
  53. Wolf AJ, Underhill DM. Peptidoglycan recognition by the innate immune system. Nat Rev Immunol. 2018;18(4):243–254. doi: 10.1038/nri.2017.136
  54. Wolf AJ, Reyes CN, Liang W, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166(3):624–636. doi: 10.1016/j.cell.2016.05.076
  55. Jeong JH, Jang S, Jung BJ, et al. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology. 2015;220(4):460–466. doi: 10.1016/j.imbio.2014.11.002
  56. Cox KH, Cox ME, Woo-Rasberry V, Hasty DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One. 2012;7(10):e47333. doi: 10.1371/journal.pone.0047333
  57. Kim HG, Kim NR, Gim MG, et al. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-production in THP-1 cells and endotoxin shock in mice. J Immunol. 2008;180(4):2553–2561. doi: 10.4049/jimmunol.180.4.2553
  58. Yipp BG, Andonegui G, Howlett CJ. Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versuslipoteichoic acid. J Immunol. 2002;168(9):4650–4658. doi: 10.4049/jimmunol.168.9.4650
  59. Sharma P, Dube D, Sinha M, et al. Structural insights into the dual strategy of recognition by peptidoglycan recognition protein, PGRP-S: Structure of the ternary complex of PGRP-S with lipopolysaccharide and stearic acid. PLoS One. 2013;8(1):e53756. doi: 10.1371/journal.pone.0053756
  60. Van Langevelde P, van Dissel JT, Ravensbergen E, et al. Antibiotic-induced release of lipoteichoic acid and peptidoglycan from staphylococcus aureus: Quantitative measurements and biological reactivities. Agents Chemother. 1998;42(12):3073–3078. doi: 10.1128/AAC.42.12.3073
  61. Imai J, Kitamoto S, Sugihara K, et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol. 2019;12(3):632–643. doi: 10.1038/s41385-019-0138-4
  62. Naseer N, Egan MS, Ruiz VM, et al. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog. 2022;18(1):e1009718. doi: 10.1371/journal.ppat.1009718
  63. Xue Y, Tuipulotu ED, Tan WH, et al. Emerging activators and regulators ofinflammasomes and pyroptosis. Trends Immunol. 2019;40(11):1035–1052. doi: 10.1016/j.it.2019.09.005
  64. Grimaldi E, Donnarumma G, Perfetto B, et al. Proinflammatory signal transduction pathway induced by Shigella flexneri porins in caco-2 cells. Braz J Microbiol. 2009;40(3):701–713. doi: 10.1590/S1517-838220090003000036
  65. Mukhopadhaya A, Mahalanabis D, Chakrabarti MK. Role of Shigella flexneri 2a 34 kDa outer membrane protein in induction of protective immune response. Vaccine. 2006;24(33-34):6028–6036. doi: 10.1016/j.vaccine.2006.03.026
  66. Sugimoto N, Leu H, Inoue N, et al. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci. 2015;22(1):78. doi: 10.1186/s12929-015-0184-5
  67. Keskinidou C, Lotsios NS, Vassiliou AG, et al. The interplay between aquaporin-1 and the hypoxia-inducible factor 1α in a lipopolysaccharide-induced lung injury model in human pulmonary microvascular endothelial cells. Int J Mol Sci. 2022;23(18):10588. doi: 10.3390/ijms231810588
  68. Zhu Y, Wang Y, Teng W, et al. Role of Aquaporin-3 in intestinal injury induced by sepsis. Biol Pharm Bull. 2019;42(10):1641–1650. doi: 10.1248/bpb.b19-00073
  69. Takeuchi O, Kawai T, Mühlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001;13(7):933–940. doi: 10.1093/intimm/13.7.933
  70. Fang H, Wang Y, Deng J, et al. Sepsis-induced gut dysbiosis mediates the susceptibility to sepsis-associated encephalopathy in mice. Systems. 2022;7(3):e0139921. doi: 10.1128/msystems.01399-21
  71. Wang L, Lin F, Ren M, et al. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol. 2021;(100):108116. doi: 10.1016/j.intimp.2021.108116
  72. Johannes HM, Abraham PR, van Barreveld E, et al., Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect Immun. 2003;71(6):3280–3284. doi: 10.1128/IAI.71.6.3280-3284.2003
  73. Levine DM, Parker TS, Donnelly TM, et al. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA. 1993;90(24):12040–12044. doi: 10.1073/pnas.90.24.12040
  74. Vreugdenhil AC, Snoek AM, van Veer C, et al. LPS-binding protein circulates in association with apoB-containing lipoproteins and enhances endotoxin-LDL/VLDL interaction. J Clin Invest. 2001;107(2):225–234. doi: 10.1172/JCI10832
  75. Leung AK, Genga KR, Topchiy E, et al. Reduced proprotein convertase subtilisin/kexin 9 (PCSK9) function increases lipoteichoic acid clearance and improves outcomes in Gram positive septic shock patients. Sci Rep. 2019;9(1):10588. doi: 10.1038/s41598-019-46745-0
  76. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the cell wall of a Gram-positive bacterium (according to [40]).

Download (593KB)
3. Fig. 2. Gram-positive and Gram-negative bacterial pathogen-associated molecular patterns (PAMPs) interact with various membrane-bound and cytosolic receptors in the host cell. LPS ― lipopolysaccharide; PG ― peptidoglycan; LTA ― lipoteichoic acid; TLR ― toll-like receptor; NOD ― nucleotide-binding oligomerization domain containing protein; NAIP ― protein that inhibits NOD-like receptor apoptosis; HBP ― heptose-1,7-bisphosphate; ALPK1 ― alpha kinase-1 (quoted from [43]).

Download (650KB)

Copyright (c) 2023 Eco-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».