–Invariant Fock–Carleson Type Measures for Derivatives of Order k and the Corresponding Toeplitz Operators


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Our purpose is to characterize the so-called horizontal Fock–Carleson type measures for derivatives of order k (we write it k-hFC for short) for the Fock space as well as the Toeplitz operators generated by sesquilinear forms given by them. We introduce real coderivatives of k-hFC type measures and show that the C*-algebra generated by Toeplitz operators with the corresponding class of symbols is commutative and isometrically isomorphic to a certain C*-subalgebra of L(ℝn). The above results are extended to measures that are invariant under translations along Lagrangian planes.

作者简介

K. Esmeral

Universidad de Caldas

Email: grigori@chalmers.se
哥伦比亚, Manizales, 170004

G. Rozenblum

Chalmers University of Technology and University of Gothenburg; St. Petersburg State University

编辑信件的主要联系方式.
Email: grigori@chalmers.se
瑞典, Gothenburg, S-412 96; 7-9, Universitetskaya nab, St. Petersburg, 190434

N. Vasilevski

Cinvestav-IPN

Email: grigori@chalmers.se
墨西哥, Mexico City, DF, 07360

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019