–Invariant Fock–Carleson Type Measures for Derivatives of Order k and the Corresponding Toeplitz Operators
- Autores: Esmeral K.1, Rozenblum G.2,3, Vasilevski N.4
-
Afiliações:
- Universidad de Caldas
- Chalmers University of Technology and University of Gothenburg
- St. Petersburg State University
- Cinvestav-IPN
- Edição: Volume 242, Nº 2 (2019)
- Páginas: 337-358
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242978
- DOI: https://doi.org/10.1007/s10958-019-04481-w
- ID: 242978
Citar
Resumo
Our purpose is to characterize the so-called horizontal Fock–Carleson type measures for derivatives of order k (we write it k-hFC for short) for the Fock space as well as the Toeplitz operators generated by sesquilinear forms given by them. We introduce real coderivatives of k-hFC type measures and show that the C*-algebra generated by Toeplitz operators with the corresponding class of symbols is commutative and isometrically isomorphic to a certain C*-subalgebra of L∞(ℝn). The above results are extended to measures that are invariant under translations along Lagrangian planes.
Sobre autores
K. Esmeral
Universidad de Caldas
Email: grigori@chalmers.se
Colômbia, Manizales, 170004
G. Rozenblum
Chalmers University of Technology and University of Gothenburg; St. Petersburg State University
Autor responsável pela correspondência
Email: grigori@chalmers.se
Suécia, Gothenburg, S-412 96; 7-9, Universitetskaya nab, St. Petersburg, 190434
N. Vasilevski
Cinvestav-IPN
Email: grigori@chalmers.se
México, Mexico City, DF, 07360
Arquivos suplementares
