Metacyclic 2-Extensions with Cyclic Kernel and Ultrasolvability Questions
- 作者: Kiselev D.D.1
-
隶属关系:
- Russian Foreign Trade Academy
- 期: 卷 240, 编号 4 (2019)
- 页面: 447-458
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242760
- DOI: https://doi.org/10.1007/s10958-019-04362-2
- ID: 242760
如何引用文章
详细
Necessary and sufficient conditions for a metacyclic extension to be 2-local and ultrasolvable are established. These conditions are used to prove the ultrasolvability of an arbitrary group extension which has a local ultrasolvable associated subextension of the second type. The obtained reductions enables us to derive ultrasolvability results for a wide class of nonsplit 2-extensions with cyclic kernel.
作者简介
D. Kiselev
Russian Foreign Trade Academy
编辑信件的主要联系方式.
Email: denmexmath@yandex.ru
俄罗斯联邦, Moscow
补充文件
