On Consequences of the Strong Convergence in Lebesgue–Orlich Spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the continuity in the sense of the strong topology for the flux function υ → l(υ) = |υ|p(⋅) − 2υ acting from the Lebesgue–Orlicz space Lp(⋅)(Ω, m) to the dual Lp ′ (⋅)(Ω, m), where p(⋅) is the Hölder-conjugate exponent, under the assumption that p(·) is an L(Ω)-function such that 1 < α ≤ p(·) ≤ β < ∞. We obtain estimates for the convergence \( {\left\Vert l\left({\upsilon}_n\right)-l\left(\upsilon \right)\right\Vert}_{p^{\prime}\left(\cdot \right)}\to 0 \) with respect to the smallness order as ‖υn − υp(⋅) → 0. The strong continuity of the energy functional \( \underset{\varOmega }{\int }{\left|\upsilon \right|}^{p\left(\cdot \right)} dx \) is a consequence of the strong continuity of the flux function.

作者简介

S. Pastukhova

MIREA, Russian Technological University

编辑信件的主要联系方式.
Email: pas-se@yandex.ru
俄罗斯联邦, 78, pr. Vernadskogo, Moscow, 119454

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018