On Consequences of the Strong Convergence in Lebesgue–Orlich Spaces
- Authors: Pastukhova S.E.1
-
Affiliations:
- MIREA, Russian Technological University
- Issue: Vol 235, No 3 (2018)
- Pages: 312-321
- Section: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242114
- DOI: https://doi.org/10.1007/s10958-018-4075-7
- ID: 242114
Cite item
Abstract
We study the continuity in the sense of the strong topology for the flux function υ → l(υ) = |υ|p(⋅) − 2υ acting from the Lebesgue–Orlicz space Lp(⋅)(Ω, ℝm) to the dual Lp ′ (⋅)(Ω, ℝm), where p′(⋅) is the Hölder-conjugate exponent, under the assumption that p(·) is an L∞(Ω)-function such that 1 < α ≤ p(·) ≤ β < ∞. We obtain estimates for the convergence \( {\left\Vert l\left({\upsilon}_n\right)-l\left(\upsilon \right)\right\Vert}_{p^{\prime}\left(\cdot \right)}\to 0 \) with respect to the smallness order as ‖υn − υ‖p(⋅) → 0. The strong continuity of the energy functional \( \underset{\varOmega }{\int }{\left|\upsilon \right|}^{p\left(\cdot \right)} dx \) is a consequence of the strong continuity of the flux function.
About the authors
S. E. Pastukhova
MIREA, Russian Technological University
Author for correspondence.
Email: pas-se@yandex.ru
Russian Federation, 78, pr. Vernadskogo, Moscow, 119454
Supplementary files
