On Large Deviations for Sums of i.i.d. Bernoulli Random Variables


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Tail probabilities are studied for the binomial distribution. The Hoeffding inequality is sharpened in this particular case through estimating an integral factor in the Esscher transform, which is omitted in Hoeffding’s proof. This approach was already used by Talagrand (1995) in the general case. However, our results are much more precise. In particular, all involved constants are given in the explicit form.

作者简介

S. Nagaev

Sobolev Institute of Mathematics, Siberian Branch of RAS

编辑信件的主要联系方式.
Email: nagaev@math.nsc.ru
俄罗斯联邦, Novosibirsk

V. Chebotarev

Computing Center, Far Eastern Branch of RAS; Far Eastern State Transport University

Email: nagaev@math.nsc.ru
俄罗斯联邦, Vladivostok; Khabarovsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018