On Cubic Exponential Sums and Gauss Sums


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let eq be a nontrivial additive character of a finite field ????q of order q ≡ 1(mod 3) and let ψ be a cubic multiplicative character of ????q, ψ(0) = 0. Consider the cubic Gauss sum and the cubic exponential sum

\( G\left(\psi \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q(z)\psi (z),\kern0.5em C\left(\omega \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q\left(\frac{z^3}{\omega }-3z\right),\kern0.5em \omega \in {\mathbb{F}}_q,\kern1em \omega \ne 0. \)

It is proved that for all nonzero a, b ∈ ????q,

\( \frac{1}{q}\sum \limits_nC(an)C(bn)\psi (n)+\frac{1}{q}\psi (ab)G{\left(\psi \right)}^2=\overline{\psi}(ab)\psi \left(a-b\right)\overline{G\left(\psi \right)}, \)

where the summation runs over all nonzero n ∈ ????q.

作者简介

N. Proskurin

St. Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: np@pdmi.ras.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018