On Cubic Exponential Sums and Gauss Sums
- 作者: Proskurin N.V.1
-
隶属关系:
- St. Petersburg Department of the Steklov Mathematical Institute
- 期: 卷 234, 编号 5 (2018)
- 页面: 697-700
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241981
- DOI: https://doi.org/10.1007/s10958-018-4037-0
- ID: 241981
如何引用文章
详细
Let eq be a nontrivial additive character of a finite field ????q of order q ≡ 1(mod 3) and let ψ be a cubic multiplicative character of ????q, ψ(0) = 0. Consider the cubic Gauss sum and the cubic exponential sum
\( G\left(\psi \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q(z)\psi (z),\kern0.5em C\left(\omega \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q\left(\frac{z^3}{\omega }-3z\right),\kern0.5em \omega \in {\mathbb{F}}_q,\kern1em \omega \ne 0. \)![]()
It is proved that for all nonzero a, b ∈ ????q,
\( \frac{1}{q}\sum \limits_nC(an)C(bn)\psi (n)+\frac{1}{q}\psi (ab)G{\left(\psi \right)}^2=\overline{\psi}(ab)\psi \left(a-b\right)\overline{G\left(\psi \right)}, \)![]()
where the summation runs over all nonzero n ∈ ????q.
作者简介
N. Proskurin
St. Petersburg Department of the Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: np@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
