On Cubic Exponential Sums and Gauss Sums


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let eq be a nontrivial additive character of a finite field ????q of order q ≡ 1(mod 3) and let ψ be a cubic multiplicative character of ????q, ψ(0) = 0. Consider the cubic Gauss sum and the cubic exponential sum

\( G\left(\psi \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q(z)\psi (z),\kern0.5em C\left(\omega \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q\left(\frac{z^3}{\omega }-3z\right),\kern0.5em \omega \in {\mathbb{F}}_q,\kern1em \omega \ne 0. \)

It is proved that for all nonzero a, b ∈ ????q,

\( \frac{1}{q}\sum \limits_nC(an)C(bn)\psi (n)+\frac{1}{q}\psi (ab)G{\left(\psi \right)}^2=\overline{\psi}(ab)\psi \left(a-b\right)\overline{G\left(\psi \right)}, \)

where the summation runs over all nonzero n ∈ ????q.

Sobre autores

N. Proskurin

St. Petersburg Department of the Steklov Mathematical Institute

Autor responsável pela correspondência
Email: np@pdmi.ras.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018