Automorphisms of semigroups of k-linked upfamilies
- 作者: Gavrylkiv V.M.1
-
隶属关系:
- Vasyl Stefanyk Precarpathian National University
- 期: 卷 234, 编号 1 (2018)
- 页面: 21-34
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241743
- DOI: https://doi.org/10.1007/s10958-018-3978-7
- ID: 241743
如何引用文章
详细
A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
作者简介
Volodymyr Gavrylkiv
Vasyl Stefanyk Precarpathian National University
编辑信件的主要联系方式.
Email: vgavrylkiv@gmail.com
乌克兰, Ivano-Frankivsk
补充文件
