Automorphisms of semigroups of k-linked upfamilies
- Авторлар: Gavrylkiv V.M.1
-
Мекемелер:
- Vasyl Stefanyk Precarpathian National University
- Шығарылым: Том 234, № 1 (2018)
- Беттер: 21-34
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241743
- DOI: https://doi.org/10.1007/s10958-018-3978-7
- ID: 241743
Дәйексөз келтіру
Аннотация
A family \( \mathcal{A} \) of non-empty subsets of a set X is called an upfamily, if, for each set \( A\in \mathcal{A} \); any set B ⊃ A belongs to \( \mathcal{A} \). An upfamily \( \mathrm{\mathcal{L}} \) is called k-linked, if \( \cap \mathrm{\mathcal{F}}\ne \varnothing \) for any subfamily \( \mathrm{\mathcal{F}}\subset \mathrm{\mathcal{L}} \) of cardinality \( \left|\mathrm{\mathcal{F}}\right|\le k \). The extension Nk(X) consists of all k-linked upfamilies on X. Any associative binary operation ∗ : X × X → X can be extended to an associative binary operation ∗ : Nk(X) × Nk(X) → Nk(X). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
Негізгі сөздер
Авторлар туралы
Volodymyr Gavrylkiv
Vasyl Stefanyk Precarpathian National University
Хат алмасуға жауапты Автор.
Email: vgavrylkiv@gmail.com
Украина, Ivano-Frankivsk
Қосымша файлдар
