The CMV Matrix and the Generalized Lanczos Process


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The CMV matrix is the five-diagonal matrix that represents the operator of multiplication by the independent variable in a special basis formed of Laurent polynomials orthogonal on the unit circle C. The article by Cantero, Moral, and Velázquez, published in 2003 and describing this matrix, has attracted much attention because it implies that the conventional orthogonal polynomials on C can be interpreted as the characteristic polynomials of the leading principal submatrices of a certain five-diagonal matrix. The present paper recalls that finite-dimensional sections of the CMV matrix appeared in papers on the unitary eigenvalue problem long before the article by Cantero et al. was published. Moreover, band forms were also found for a number of other situations in the normal eigenvalue problem.

作者简介

Kh. Ikramov

Moscow Lomonosov State University

编辑信件的主要联系方式.
Email: ikramov@cs.msu.su
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018