Multidimensional Analogs of the Cauchy–Riemann System and Representations of Their Solutions via Harmonic Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

At present, there are numerous multidimensional generalizations of holomorphic vectors. The most general of these is the four-dimensional generalization of the Cauchy–Riemann system. In the present work, by introducing two quaternion functions and the notion of quaternion differentiation, we obtain, for the first time, a five-dimensional generalization of holomorphic vectors. By using the representation of holomorphic vectors via the quaternion harmonic function and its derivatives, we consider the Riemann–Hilbert problem and one problem in a layer. A new solution of the Riemann–Hilbert problem in the five-dimensional half space is obtained.

作者简介

J. Tokibetov

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
哈萨克斯坦, Almaty

G. Abduakhitova

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
哈萨克斯坦, Almaty

А. Sarsekeeva

Al-Farabi Kazakh National University

Email: Jade.Santos@springer.com
哈萨克斯坦, Almaty

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018