Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 235, № 3 (2018)

Article

Solvability of Some Integro-Differential Equations with Anomalous Diffusion in Two Dimensions

Vougalter V., Volpert V.

Аннотация

We study the existence of solutions of an integro-differential equation in the case of the anomalous diffusion with the negative Laplace operator in a fractional power in two dimensions. The proof of the existence of solutions is based on a fixed point technique. Solvability conditions for non Fredholm elliptic operators in unbounded domains are used.

Journal of Mathematical Sciences. 2018;235(3):243-255
pages 243-255 views

Application of the p-Adic Topology on ℤ to the Problem of Finding Solutions in Integers of an Implicit Linear Difference Equation

Gerasimov V., Gefter S., Goncharuk A.

Аннотация

We study solutions in integers of an implicit linear inhomogeneous first order difference equation bxn+1 = axn + fn. Based on the p-adic topology on the ring of integers, we obtain a criterion for the existence of solutions and show that for a = 1 a typical (in the natural topological sense) equation has no integer solutions.

Journal of Mathematical Sciences. 2018;235(3):256-261
pages 256-261 views

Smoothness of Functions in Spaces of the Finite Element Method

Dem’yanovich Y., Prozorova E.

Аннотация

We find necessary and sufficient conditions for the generalized smoothness of the coordinate functions obtained from the approximate relations. We show that for the coordinate functions the smoothness on their supports is equivalent to that on the boundaries of supports. We obtain conditions for the continuity of Courant type finite element approximations and conditions for the uniqueness of a linear space of such approximations.

Journal of Mathematical Sciences. 2018;235(3):262-274
pages 262-274 views

Linear Oscillations of Thin Plates with Corners and Cracks

Korikov D.

Аннотация

We study linear oscillations of a thin plate in a bounded domain G ⊂ ℝ2 with finitely many corner points at the boundary ∂G. The time t runs the real axis. The boundary conditions are related to the rigidly fixed or free boundary of the plate. We describe the asymptotics of a solution to the problem near the corner points.

Journal of Mathematical Sciences. 2018;235(3):275-311
pages 275-311 views

On Consequences of the Strong Convergence in Lebesgue–Orlich Spaces

Pastukhova S.

Аннотация

We study the continuity in the sense of the strong topology for the flux function υ → l(υ) = |υ|p(⋅) − 2υ acting from the Lebesgue–Orlicz space Lp(⋅)(Ω, m) to the dual Lp ′ (⋅)(Ω, m), where p(⋅) is the Hölder-conjugate exponent, under the assumption that p(·) is an L(Ω)-function such that 1 < α ≤ p(·) ≤ β < ∞. We obtain estimates for the convergence \( {\left\Vert l\left({\upsilon}_n\right)-l\left(\upsilon \right)\right\Vert}_{p^{\prime}\left(\cdot \right)}\to 0 \) with respect to the smallness order as ‖υn − υp(⋅) → 0. The strong continuity of the energy functional \( \underset{\varOmega }{\int }{\left|\upsilon \right|}^{p\left(\cdot \right)} dx \) is a consequence of the strong continuity of the flux function.

Journal of Mathematical Sciences. 2018;235(3):312-321
pages 312-321 views

Linearization of a Free Boundary Problem of Magnetohydrodynamics

Frolova E.

Аннотация

We consider the linear conjugation problem for a magnetic field. Such a problem arises in the linearization of a free boundary problem with two fluids. We prove the unique solvability in the Sobolev–Slobodetskii spaces.

Journal of Mathematical Sciences. 2018;235(3):322-333
pages 322-333 views

Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom

Shamolin M.

Аннотация

We establish the integrability for some classes of dynamic systems on the tangent bundles of multidimensional manifolds. We consider the case where the force fields possess variable dissipation. An example of a four-dimensional manifold is discussed in detail.

Journal of Mathematical Sciences. 2018;235(3):334-359
pages 334-359 views

The Neumann Problem for the Generalized Hénon Equation

Shcheglova A.

Аннотация

We study the behavior of radial solutions to the boundary value problem

\( -{\varDelta}_pu+{u}^{p-1}={\left|x\right|}^a{u}^{q-1}\; in\;B,\kern1em \frac{\partial u}{\mathrm{\partial n}}=0\; on\;\partial B,\kern1em q>p, \)

in the unit ball B and prove the existence of nonradial positive solutions for some values of parameters. We obtain multiplicity results which are new even in the case p = 2.

Journal of Mathematical Sciences. 2018;235(3):360-373
pages 360-373 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».