On Various Approaches to Asymptotics of Solutions to the Third Painlevé Equation in a Neighborhood of Infinity
- Авторы: Vasilyev A.V.1, Parusnikova A.V.1
-
Учреждения:
- National Research University “Higher School of Economics,”
- Выпуск: Том 241, № 3 (2019)
- Страницы: 318-326
- Раздел: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242890
- DOI: https://doi.org/10.1007/s10958-019-04426-3
- ID: 242890
Цитировать
Аннотация
We examine asymptotic expansions of the third Painlevé transcendents for αδ ≠ = 0 and γ = 0 in the neighborhood of infinity in a sector of aperture <2π by the method of dominant balance). We compare intermediate results with results obtained by methods of three-dimensional power geometry. We find possible asymptotics in terms of elliptic functions, construct a power series, which represents an asymptotic expansion of the solution to the third Painlevé equation in a certain sector, estimate the aperture of this sector, and obtain a recurrent relation for the coefficients of the series.
Об авторах
A. Vasilyev
National Research University “Higher School of Economics,”
Автор, ответственный за переписку.
Email: vasiljev.andr@gmail.com
Россия, Moscow
A. Parusnikova
National Research University “Higher School of Economics,”
Email: vasiljev.andr@gmail.com
Россия, Moscow
Дополнительные файлы
