Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 241, № 3 (2019)

Article

N. V. Stepanov and His Geometric Theory of Ordinary Differential Equations

Banaru G.

Аннотация

We review the main results of the geometric theory of ordinary differential equations obtained by the prominent Russian geometer N. V. Stepanov (1926–1991). Some results obtained by Stepanov are illustrated by examples of third- and five-order equations.

Journal of Mathematical Sciences. 2019;241(3):245-250
pages 245-250 views

Description of Functionals that are Minimized by Φ-Triangulations

Klyachin V., Grigorieva E.

Аннотация

We obtain condition for a function f defined on the set of simplexes S under which the values \( F(T)=\sum \limits_{S\in T}f(S)\;\mathrm{or}\;{F}_f^m(T){=}_{S\in T}^{\mathrm{max}}f(S) \) are minimal for Φ-triangulations of T . As consequences, we also obtain certain extremal properties of the classical Delone triangulation.

Journal of Mathematical Sciences. 2019;241(3):251-257
pages 251-257 views

Existence of Entropic Solutions of an Elliptic Problem in Anisotropic Sobolev–Orlicz Spaces

Kozhevnikova L.

Аннотация

We consider the Dirichlet problem in an arbitrary unbounded domain with inhomogeneous boundary conditions for a certain class of anisotropic elliptic equations whose right-hand sides belong to the class L1 and prove the existence of entropic solutions in anisotropic Sobolev–Orlicz spaces.

Journal of Mathematical Sciences. 2019;241(3):258-284
pages 258-284 views

Oscillatory and Nonoscillatory Conditions for a Second-Order Half-Linear Differential Equation

Kussainova L., Koshkarova B.

Аннотация

In this paper, we obtain oscillatory and nonoscillatory conditions for a certain second-order half-linear differential equation.

Journal of Mathematical Sciences. 2019;241(3):285-289
pages 285-289 views

Existence of Weak Solutions to an Elliptic-Parabolic Equation with Variable Order of Nonlinearity

Mukminov F., Andriyanova E.

Аннотация

We consider an equation with variable nonlinearity of the form |u|p(x), in which the parabolic term can vanish, i.e., in the corresponding domain the parabolic equation becomes “elliptic.” Under the weak monotonicity conditions (nonstrict inequality) we prove the existence of a solution to the first mixed problem in a cylinder with a bounded base.

Journal of Mathematical Sciences. 2019;241(3):290-305
pages 290-305 views

Solution of Periodic Boundary-Value Problems of the Spatial Theory of Elasticity in the Vector Form

Osipov E.

Аннотация

We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundamental boundary-value problems in the half-space in the vector form. The diffraction problem for an elastic wave on a periodic system of defects in the vector form is reduced to the paired summator functional equation.

Journal of Mathematical Sciences. 2019;241(3):306-317
pages 306-317 views

On Various Approaches to Asymptotics of Solutions to the Third Painlevé Equation in a Neighborhood of Infinity

Vasilyev A., Parusnikova A.

Аннотация

We examine asymptotic expansions of the third Painlevé transcendents for αδ ≠ = 0 and γ = 0 in the neighborhood of infinity in a sector of aperture <2π by the method of dominant balance). We compare intermediate results with results obtained by methods of three-dimensional power geometry. We find possible asymptotics in terms of elliptic functions, construct a power series, which represents an asymptotic expansion of the solution to the third Painlevé equation in a certain sector, estimate the aperture of this sector, and obtain a recurrent relation for the coefficients of the series.

Journal of Mathematical Sciences. 2019;241(3):318-326
pages 318-326 views

Hilbert Problem for the Cauchy–Riemann Equation with a Singular Circle and a Singular Point

Rasulov A., Bobodzhanova M., Fedorov Y.

Аннотация

We examine a generalized Cauchy–Riemann-type system whose coefficients have singularities, construct the resolvent of the corresponding integral equation, and find an integral representation of the general solution.

Journal of Mathematical Sciences. 2019;241(3):327-339
pages 327-339 views

Stochastic Perturbations of Stable Dynamical Systems: Trajectory-Wise Approach

Sultanov O.

Аннотация

We study stochastic perturbations of a dynamical system with a locally stable fixed point. The perturbed system has the form of Ito stochastic differential equations. We assume that perturbations do not vanish at the equilibrium of the deterministic system. Using the approach based on consideration of trajectories to the analysis of stochastic differential equations, we find restrictions for perturbations under which the stability of the equilibrium is preserved with probability 1.

Journal of Mathematical Sciences. 2019;241(3):340-353
pages 340-353 views

On Optimal Approximations of the Norm of the Fourier Operator by a Family of Logarithmic Functions

Shakirov I.

Аннотация

The Lebesgue constant corresponding to the classical Fourier operator is approximated by a family of logarithmic functions depending on two parameters. We find optimal values of parameters for which the best uniform approximation of the Lebesgue constant by a specific function of this family is achieved. The case where the corresponding remainder strictly increases is also considered.

Journal of Mathematical Sciences. 2019;241(3):354-363
pages 354-363 views

Basic Bifurcation Scenarios in Neighborhoods of Boundaries of Stability Regions of Libration Points in the Three-Body Problem

Yumagulov M.

Аннотация

In this paper, we construct stability regions (in the linear approximation) of triangular libration points for the planar, restricted, elliptic three-body problem and examine bifurcations that occur when parameters of the system pass through the boundaries of these regions. A new scheme for the construction of stability regions is presented, which leads to approximation formulas describing these boundaries. We prove that on one part of the boundary, the main scenario of bifurcation is the appearance of nonstationary 4π-periodic solutions that are close to a triangular libration point, whereas on the other part, the main scenario is the appearance of quasiperiodic solutions.

Journal of Mathematical Sciences. 2019;241(3):364-378
pages 364-378 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».