Young Tableaux and Stratification of the Space of Square Complex Matrices
- Авторлар: Babich M.V.1
-
Мекемелер:
- St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
- Шығарылым: Том 213, № 5 (2016)
- Беттер: 651-661
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/237222
- DOI: https://doi.org/10.1007/s10958-016-2729-x
- ID: 237222
Дәйексөз келтіру
Аннотация
A stratification of the manifold of all square matrices is considered. One equivalence class consists of the matrices with the same sets of values of rank(A − λiI)j . The stratification is consistent with a fibration on submanifolds of matrices similar to each other, i.e., with the adjoint orbits fibration. Internal structures of matrices from one equivalence class are very similar; among other factors, their (co)adjoint orbits are birationally symplectomorphic. The Young tableaux technique developed in the paper describes this stratification and the fibration of the strata on (co)adjoint orbits.
Негізгі сөздер
Авторлар туралы
M. Babich
St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg State University
Хат алмасуға жауапты Автор.
Email: mbabich@pdmi.ras.ru
Ресей, St.Petersburg
Қосымша файлдар
