Simplest Test for the Two-Dimensional Dynamical Inverse Problem (BC-Method)


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamical system

\( {\displaystyle \begin{array}{ll}{u}_{tt}-\Delta u-\nabla \ln \rho \cdot \nabla u=0& in\kern1em {\mathbb{R}}_{+}^2\times \left(0,T\right),\\ {}u\left|{}_{t=0}\right.={u}_t\left|{}_{t=0}\right.=0& in\kern1em {\mathbb{R}}_{+}^2,\\ {}{u}_y\left|{}_{y=0}\right.=f& for\kern1em 0\le t\le T,\end{array}} \)

is under consideration, where \( {\mathbb{R}}_{+}^2:= \left\{\left(x,y\right)\in {\mathbb{R}}^2\left|y\right.>0\right\} \); ρ = ρ(x, y) is a smooth positive function; f = f(x, t) is a boundary control; u = uf(x, y, t) is a solution. With the system one associates a response operator \( R:f\mapsto {u}^f\left|{}_{y=0}\right. \). The inverse problem is to recover the function ρ via the response operator. A short presentation of the local version of the BC-method, which recovers ρ via the data given on a part of the boundary, is provided.

If ρ is constant, the forward problem is solved in explicit form. In the paper, the corresponding representations for the solutions and response operator are derived. A way of making use of them for testing the BC-algorithm, which solves the inverse problem, is outlined. The goal of the paper is to extend the circle of the BC-method users, who are interested in numerical realization of methods for solving inverse problems.

Sobre autores

M. Belishev

St. Petersburg Department of the Steklov Mathematical Institute

Autor responsável pela correspondência
Email: belishev@pdmi.ras.ru
Rússia, St. Petersburg

N. Karazeeva

St. Petersburg Department of the Steklov Mathematical Institute

Email: belishev@pdmi.ras.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019