Simplest Test for the Two-Dimensional Dynamical Inverse Problem (BC-Method)
- Авторлар: Belishev M.I.1, Karazeeva N.A.1
-
Мекемелер:
- St. Petersburg Department of the Steklov Mathematical Institute
- Шығарылым: Том 243, № 5 (2019)
- Беттер: 656-670
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/243134
- DOI: https://doi.org/10.1007/s10958-019-04567-5
- ID: 243134
Дәйексөз келтіру
Аннотация
The dynamical system
is under consideration, where \( {\mathbb{R}}_{+}^2:= \left\{\left(x,y\right)\in {\mathbb{R}}^2\left|y\right.>0\right\} \); ρ = ρ(x, y) is a smooth positive function; f = f(x, t) is a boundary control; u = uf(x, y, t) is a solution. With the system one associates a response operator \( R:f\mapsto {u}^f\left|{}_{y=0}\right. \). The inverse problem is to recover the function ρ via the response operator. A short presentation of the local version of the BC-method, which recovers ρ via the data given on a part of the boundary, is provided.
If ρ is constant, the forward problem is solved in explicit form. In the paper, the corresponding representations for the solutions and response operator are derived. A way of making use of them for testing the BC-algorithm, which solves the inverse problem, is outlined. The goal of the paper is to extend the circle of the BC-method users, who are interested in numerical realization of methods for solving inverse problems.
Авторлар туралы
M. Belishev
St. Petersburg Department of the Steklov Mathematical Institute
Хат алмасуға жауапты Автор.
Email: belishev@pdmi.ras.ru
Ресей, St. Petersburg
N. Karazeeva
St. Petersburg Department of the Steklov Mathematical Institute
Email: belishev@pdmi.ras.ru
Ресей, St. Petersburg
Қосымша файлдар
