Simplest Test for the Two-Dimensional Dynamical Inverse Problem (BC-Method)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The dynamical system

\( {\displaystyle \begin{array}{ll}{u}_{tt}-\Delta u-\nabla \ln \rho \cdot \nabla u=0& in\kern1em {\mathbb{R}}_{+}^2\times \left(0,T\right),\\ {}u\left|{}_{t=0}\right.={u}_t\left|{}_{t=0}\right.=0& in\kern1em {\mathbb{R}}_{+}^2,\\ {}{u}_y\left|{}_{y=0}\right.=f& for\kern1em 0\le t\le T,\end{array}} \)

is under consideration, where \( {\mathbb{R}}_{+}^2:= \left\{\left(x,y\right)\in {\mathbb{R}}^2\left|y\right.>0\right\} \); ρ = ρ(x, y) is a smooth positive function; f = f(x, t) is a boundary control; u = uf(x, y, t) is a solution. With the system one associates a response operator \( R:f\mapsto {u}^f\left|{}_{y=0}\right. \). The inverse problem is to recover the function ρ via the response operator. A short presentation of the local version of the BC-method, which recovers ρ via the data given on a part of the boundary, is provided.

If ρ is constant, the forward problem is solved in explicit form. In the paper, the corresponding representations for the solutions and response operator are derived. A way of making use of them for testing the BC-algorithm, which solves the inverse problem, is outlined. The goal of the paper is to extend the circle of the BC-method users, who are interested in numerical realization of methods for solving inverse problems.

Авторлар туралы

M. Belishev

St. Petersburg Department of the Steklov Mathematical Institute

Хат алмасуға жауапты Автор.
Email: belishev@pdmi.ras.ru
Ресей, St. Petersburg

N. Karazeeva

St. Petersburg Department of the Steklov Mathematical Institute

Email: belishev@pdmi.ras.ru
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019