On Boundedness of Bergman Projection Operators in Banach Spaces of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We present a simple proof of the boundedness of holomorphic and harmonic Bergman projection operators on a half-plane and a half-space respectively on the Orlicz space, the variable exponent Lebesgue space, and the variable exponent generalized Morrey space. The approach is based on an idea due to V. P. Zaharyuta and V. I. Yudovich (1962) to use Calderón–Zygmund operators for proving the boundedness of the Bergman projection in Lebesgue spaces on the unit disc. We also study the rate of growth of functions near the boundary in the spaces under consideration.

Sobre autores

A. Karapetyants

Southern Federal University; Don State Technical University

Autor responsável pela correspondência
Email: karapetyants@gmail.com
Rússia, 105, B. Sadovaia St., Rostov-on-Don, 344006; 1, pl. Gagarina, Rostov-on-Don, 344010

S. Samko

Universidade do Algarve

Email: karapetyants@gmail.com
Portugal, Campus de Gambelas, Faro, 8005-139

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017