Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4-dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B3 ⊂ ℝ3 as mappings equivariant with the standard conformal action of uniform hyperbolic lattices Γ ⊂ Isom H3 in the unit 3-ball and with its discrete representation G = ρ(Γ) ⊂ Isom H4. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordism M = (H4 ∪ Ω(G))/G, and the kernel of the homomorphism ρ: Γ → G is a free group F3 on three generators.

Авторлар туралы

Boris Apanasov

Department of Mathematics, University of Oklahoma

Хат алмасуға жауапты Автор.
Email: apanasov@ou.edu
АҚШ, Norman

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019