Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 239, № 1 (2019)

Article

To the theory of mappings of the Sobolev class with the critical index

Afanas’eva E., Ryazanov V., Salimov R.

Аннотация

It is established that any homeomorphism f of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) with outer dilatation \( {K}_O\left(x,f\right)\in {L}_{\mathrm{loc}}^{n-1} \) is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with \( Q(x)={K}_O^{n-1}\left(x,f\right) \). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class \( {W}_{\mathrm{loc}}^{1,1} \) admits continuous or homeomorphic extensions to the boundary.

Journal of Mathematical Sciences. 2019;239(1):1-16
pages 1-16 views

Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables

Bandura A., Skaskiv O.

Аннотация

We obtain the sufficient conditions of boundedness of L-index in joint variables for analytic functions in the unit ball, where \( L:{\mathbb{C}}^n\to {\mathbb{R}}_{+}^n \) is a continuous positive vector-function. They give an stimate of the maximum modulus of an analytic function by its minimum modulus on a skeleton in a polydisc and describe the behavior of all partial logarithmic derivatives outside some exceptional set and the distribution of zeros. The deduced results are also new for analytic functions in the unit disc of bounded index and l-index. They generalize known results by G. H. Fricke, M. M. Sheremeta, A. D. Kuzyk, and V. O. Kushnir.

Journal of Mathematical Sciences. 2019;239(1):17-29
pages 17-29 views

Approximative Characteristics of Modular Orlicz Spaces

Chaichenko S., Shydlich A.

Аннотация

We obtain the exact values of the best approximations, basic widths and Kolmogorov widths for some sets of images of multipliers in the modular Orlicz spaces lM: We give a description of the space SM,N of all multipliers from the space lM to lN.

Journal of Mathematical Sciences. 2019;239(1):30-42
pages 30-42 views

Solution of Systems of Partial Differential Equations by Using Properties of Monogenic Functions on Commutative Algebras

Kolomiiets T., Pogorui A., Rodríguez-Dagnino R.

Аннотация

Some systems of differential equations with partial derivatives are studied by using the properties of Gâteaux differentiable functions on commutative algebras. The connection between solutions of systems of partial differential equations and components of monogenic functions on the corresponding commutative algebras is shown. We also give some examples of systems of partial differential equations and find their solutions.

Journal of Mathematical Sciences. 2019;239(1):43-50
pages 43-50 views

On properties of functions from Lizorkin–Triebel–Morrey-type spaces

Najafov A., Gasimova A.

Аннотация

We have introduced new functional spaces of the Lizorkin–Triebel–Morrey type, and a Sobolev-type inequality is proved. We have also shown that the generalized derivatives of functions from this spaces satisfy the generalized Hölder condition.

Journal of Mathematical Sciences. 2019;239(1):51-61
pages 51-61 views

Differential-symbol method of constructing the quasipolynomial solutions of a two-point problem for a partial differential equation

Nytrebych Z., Il’kiv V., Pukach P., Malanchuk O.

Аннотация

We studied the solvability of a problem with local inhomogeneous conditions two-point in time for a homogeneous differential equation which is second-order in time and has generally the infinite order in spatial variables in the case where the set of zeros of the characteristic determinant of the problem is not empty and does not coincide with ℂs: The existence of a solution of the problem under the condition that the right-hand sides of the two-point conditions are quasipolynomials is proved. A differential-symbol method of constructing a solution of the problem is proposed.

Journal of Mathematical Sciences. 2019;239(1):62-74
pages 62-74 views

Approximate controllability of the wave equation with mixed boundary conditions

Pestov L., Strelnikov D.

Аннотация

We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω × (0; 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ Ω [0; T]; Σ ⊂ ????Ω of the lateral surface of the cylinder Ω × (0; T). The domain of observation is Σ × [0; 2T]; and the pressure on another part (????ΩnΣ) × [0; 2T]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace VH1(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincaré inequality, we obtain a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound.

Journal of Mathematical Sciences. 2019;239(1):75-85
pages 75-85 views

On geodesic bifurcations of product spaces

Rýparová L., Mikeš J., Sabykanov A.

Аннотация

The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.

Journal of Mathematical Sciences. 2019;239(1):86-91
pages 86-91 views

On monogenic functions defined in different commutative algebras

Shpakivskyi V.

Аннотация

The correspondence between a monogenic function in an arbitrary finite-dimensional commutative associative algebra and a finite collection of monogenic functions in a special commutative associative algebra is established.

Journal of Mathematical Sciences. 2019;239(1):92-109
pages 92-109 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».