Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 228, № 4 (2018)

Article

On Problems in Mathematical Physics with Variable Parameter

Anikonov Y.

Аннотация

We consider evolution equations with variable parameters. We obtain new representations of solutions and indicate their applications to inverse problems in mathematical physics.

Journal of Mathematical Sciences. 2018;228(4):335-346
pages 335-346 views

Solvability of Parametric Inverse Problem for Parabolic Equation

Belov Y., Korshun K.

Аннотация

We establish the solvability of a parametric inverse problem for an n-dimensional parabolic equation. We obtain sufficient conditions for the existence and uniqueness of a solution.

Journal of Mathematical Sciences. 2018;228(4):347-356
pages 347-356 views

Numerical Modeling of Gas-Liquid Compressible Pipe Flow Based on the Theory of Thermodynamically Compatible Systems

Belozerov A., Romenski E., Lebedeva N.

Аннотация

Based on the theory of thermodynamically compatible systems, we formulate the governing equations of a gas-liquid compressible pipe flow and develop the Runge–Kutta–TVD and Runge–Kutta–WENO high accuracy methods. The computational model is used to solve a series of test cases demonstrating its efficiency and capability to be applied to slug flows modeling.

Journal of Mathematical Sciences. 2018;228(4):357-371
pages 357-371 views

Galerkin Method for Semilinear Parabolic Equation with Varying Time Direction

Egorov I., Efimova E.

Аннотация

We establish the unique solvability of the first boundary value problem for a semilinear second order parabolic equation with varying time direction by using a modified Galerkin method and the regularization method. We obtain a priori error estimates for approximate solutions.

Journal of Mathematical Sciences. 2018;228(4):372-379
pages 372-379 views

Analytic in a Sector Resolving Families of Operators for Degenerate Evolution Fractional Equations

Fedorov V., Romanova E., Debbouche A.

Аннотация

We introduce a class of pairs of operators defining a linear homogeneous degenerate evolution fractional differential equation in a Banach space. Reflexive Banach spaces are represented as the direct sums of the phase space of the equation and the kernel of the operator at the fractional derivative. In a sector of the complex plane containing the positive half-axis, we construct an analytic family of resolving operators that degenerate only on the kernel. The results are used in the study of the solvability of initial-boundary value problems for partial differential equations containing fractional time-derivatives and polynomials in the Laplace operator with respect to the spatial variable.

Journal of Mathematical Sciences. 2018;228(4):380-394
pages 380-394 views

Qualitative Properties of Solutions to Elliptic Equations with Nonpower Nonlinearities in ℝn

Kozhevnikova L., Nikitina A.

Аннотация

We consider a class of anisotropic elliptic equations with nonpower nonlinearities. We establish the existence of a solution in the local Sobolev–Orlicz spaces without conditions on the data growth at infinity. We find sufficient uniqueness conditions, obtain estimates characterizing the behavior of the solution at infinity, and prove the continuous dependence of the solution on the right-hand side of the equation.

Journal of Mathematical Sciences. 2018;228(4):395-408
pages 395-408 views

Optimal Control of the Rigid Inclusion Size in the Problem of Equilibrium of Inhomogeneous Timoshenko Type Plates Containing Cracks

Lazarev N.

Аннотация

We consider the equilibrium problem for plates with cracks located along rigid inclusions and analyze the dependence of the solution and the derivative of the energy functional on variations of the inclusion size. We establish the solvability of the optimal control problem, where the quality functional is given by the derivative of the energy functional, whereas the control parameter correspond to the inclusion size. A similar analysis is performed for the equilibrium problems for inhomogeneous plates with rigid delaminated inclusions.

Journal of Mathematical Sciences. 2018;228(4):409-420
pages 409-420 views

Boundary Value Problems for Nonclassical Systems of Second Order Differential Equations

Oshorov B.

Аннотация

We study boundary value problems for systems of second order differential equations with principal part in the form of the squared first order differential operator. We establish the unique solvability of the boundary value problem for a nonclassical system in the plane, which can be regarded as the Riemann–Hilbert problem with discontinuous boundary conditions. Similar problems are considered in the space.

Journal of Mathematical Sciences. 2018;228(4):421-430
pages 421-430 views

Solvability of Nonlinear Inverse Problem for Hyperbolic Equation

Safiullova R.

Аннотация

We consider the nonlinear inverse problem for a second order hyperbolic equation with unknown coefficient depending on the time. We establish the existence and uniqueness of regular solutions which are used for constructing a soltuion to the inverse problem under consideration.

Journal of Mathematical Sciences. 2018;228(4):431-448
pages 431-448 views

Classical Solvability of the Radial Viscous Fingering Problem in a Hele–Shaw Cell with Surface Tension

Tani H.

Аннотация

We consider the one-phase problem on radial viscous fingering structures in a Hele–Shaw cell with surface tension. This problem is a nonlinear free-boundary problem for elliptic equations. Unlike the Stefan problem for the heat equation, we deal with a problem of hydrodynamic type. We establish the classical solvability of the one-phase Hele–Shaw problem with radial geometry by using the same method as that used for the Stefan problem and justifying the vanishing coefficient of the time-derivative in the parabolic equation.

Journal of Mathematical Sciences. 2018;228(4):449-462
pages 449-462 views

Influence of Gradient Terms on the Existence of Solutions to the Dirichlet Problem for p-Laplacian

Tersenov A.

Аннотация

We study the Dirichlet problem for the inhomogeneous p-Laplace equation with a nonlinear source and a gradient term. We investigate the influence of the gradient term on the existence of radially symmetric solutions. Sufficient conditions for the existence of solutions are explicetly given in terms of the data of the problem.

Journal of Mathematical Sciences. 2018;228(4):463-474
pages 463-474 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».