Resolvent Kernels of Self-Adjoint Extensions of the Laplace Operator on the Subspace of Solenoidal Vector Functions
- 作者: Bolokhov T.A.1
-
隶属关系:
- St.Petersburg Department of Steklov Institute of Mathematics
- 期: 卷 243, 编号 6 (2019)
- 页面: 835-840
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/243169
- DOI: https://doi.org/10.1007/s10958-019-04582-6
- ID: 243169
如何引用文章
详细
The Laplace operator on the subspace of solenoidal vector functions of three variables vanishing at the origin together with first derivatives is a symmetric operator with deficiency indices (3). Krein’s theory allows one to derive an expression for the resolvent kernel of a self-adjoint extension of the operator in question as a sum of the Green’s function of the vector Laplace operator and some additional kernel of finite rank.
作者简介
T. Bolokhov
St.Petersburg Department of Steklov Institute of Mathematics
编辑信件的主要联系方式.
Email: timur@pdmi.ras.ru
俄罗斯联邦, St.Petersburg
补充文件
