Resolvent Kernels of Self-Adjoint Extensions of the Laplace Operator on the Subspace of Solenoidal Vector Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Laplace operator on the subspace of solenoidal vector functions of three variables vanishing at the origin together with first derivatives is a symmetric operator with deficiency indices (3). Krein’s theory allows one to derive an expression for the resolvent kernel of a self-adjoint extension of the operator in question as a sum of the Green’s function of the vector Laplace operator and some additional kernel of finite rank.

作者简介

T. Bolokhov

St.Petersburg Department of Steklov Institute of Mathematics

编辑信件的主要联系方式.
Email: timur@pdmi.ras.ru
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019