Eparability of Schur Rings Over an Abelian Group of Order 4p


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An S-ring (a Schur ring) is said to be separable with respect to a class of groups if every its algebraic isomorphism to an S-ring over a group from is induced by a combinatorial isomorphism. It is proved that every Schur ring over an Abelian group G of order 4p, where p is a prime, is separable with respect to the class of Abelian groups. This implies that the Weisfeiler-Lehman dimension of the class of Cayley graphs over G is at most 3.

作者简介

G. Ryabov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: gric2ryabov@gmail.com
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019