Uniqueness of spaces pretangent to metric spaces at infinity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We find the necessary and sufficient conditions under which an unbounded metric space X has, at infinity, a unique pretangent space \( {\Omega}_{\infty, \tilde{r}}^X \) for every scaling sequence \( \tilde{r} \). In particular, it is proved that \( {\Omega}_{\infty, \tilde{r}}^X \) is unique and isometric to the closure of X for every logarithmic spiral X and every \( \tilde{r} \). It is also shown that the uniqueness of pretangent spaces to subsets of a real line is closely related to the “asymptotic asymmetry” of these subsets.

作者简介

Oleksiy Dovgoshey

Institute of Applied Mathematics and Mechanics of the NASU

编辑信件的主要联系方式.
Email: oleksiy.dovgoshey@gmail.com
乌克兰, Slov’yansk

Viktoriya Bilet

Institute of Applied Mathematics and Mechanics of the NASU

Email: oleksiy.dovgoshey@gmail.com
乌克兰, Slov’yansk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019