Differential Operators of Infinite Order in the Space of Formal Laurent Series and in the Ring of Power Series with Integer Coefficients


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the Hurwitz product (convolution) in the space of formal Laurent series over an arbitrary field of zero characteristic. We obtain the convolution equation which is satisfied by the Euler series. We find the convolution representation for an arbitrary differential operator of infinite order in the space of formal Laurent series and describe translation invariant operators in this space. Using the p-adic topology in the ring of integers, we show that any differential operator of infinite order with integer coefficients is well defined as an operator from [[z]] to p[[z]].

Sobre autores

S. Gefter

Karazin Kharkiv National University

Autor responsável pela correspondência
Email: gefter@univer.kharkov.ua
Ucrânia, 4, pl. Svobody, Kharkiv, 61000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019