Gaussian Convex Bodies: a Nonasymptotic Approach


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study linear images of a symmetric convex body C ⊆ ℝN under an n × N Gaussian random matrix G, where Nn. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of GC and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of C, quantified through several different global parameters, affects such concentration properties. When n = 1, G is simply a 1 × N row vector, and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies CN ⊆ ℝN, with N → ∞, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.

作者简介

G. Paouris

Texas A&M University

编辑信件的主要联系方式.
Email: grigoris@math.tamu.edu
美国, College Station, TX

P. Pivovarov

University of Missouri

Email: grigoris@math.tamu.edu
美国, Columbia, MO

P. Valettas

University of Missouri

Email: grigoris@math.tamu.edu
美国, Columbia, MO

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019