Gaussian Convex Bodies: a Nonasymptotic Approach
- 作者: Paouris G.1, Pivovarov P.2, Valettas P.2
-
隶属关系:
- Texas A&M University
- University of Missouri
- 期: 卷 238, 编号 4 (2019)
- 页面: 537-559
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242558
- DOI: https://doi.org/10.1007/s10958-019-04256-3
- ID: 242558
如何引用文章
详细
We study linear images of a symmetric convex body C ⊆ ℝN under an n × N Gaussian random matrix G, where N ≥ n. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of GC and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of C, quantified through several different global parameters, affects such concentration properties. When n = 1, G is simply a 1 × N row vector, and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies CN ⊆ ℝN, with N → ∞, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.
作者简介
G. Paouris
Texas A&M University
编辑信件的主要联系方式.
Email: grigoris@math.tamu.edu
美国, College Station, TX
P. Pivovarov
University of Missouri
Email: grigoris@math.tamu.edu
美国, Columbia, MO
P. Valettas
University of Missouri
Email: grigoris@math.tamu.edu
美国, Columbia, MO
补充文件
