Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.

Sobre autores

K. Nishida

General Education Center, Hyogo University of Health Sciences

Autor responsável pela correspondência
Email: kiheiji.nishida@gmail.com
Japão, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019