Bayesian Variance-Stabilizing Kernel Density Estimation Using Conjugate Prior
- Autores: Nishida K.1
-
Afiliações:
- General Education Center, Hyogo University of Health Sciences
- Edição: Volume 237, Nº 5 (2019)
- Páginas: 712-721
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242439
- DOI: https://doi.org/10.1007/s10958-019-04197-x
- ID: 242439
Citar
Resumo
Kernel-type density or regression estimator does not produce a constant estimator variance over the domain. To correct this problem, K. Nishida and Y. Kanazawa (2011, 2015) proposed a variance-stabilizing (VS) local variable bandwidth for kernel regression estimators. K. Nishida (2017) proposed another strategy to construct VS local linear regression estimator using a convex combination of three skewing estimators proposed by Choi and Hall (1998). In this study, we show that variance stabilization can be accomplished by a Bayesian approach in the case of kernel density estimator using conjugate prior.
Sobre autores
K. Nishida
General Education Center, Hyogo University of Health Sciences
Autor responsável pela correspondência
Email: kiheiji.nishida@gmail.com
Japão, 1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo
Arquivos suplementares
