Logarithmic Asymptotics of a Class of Mappings
- Авторлар: Salimov R.R.1
-
Мекемелер:
- Institute of Mathematics of the NAS of Ukraine
- Шығарылым: Том 235, № 1 (2018)
- Беттер: 52-62
- Бөлім: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/242050
- DOI: https://doi.org/10.1007/s10958-018-4058-8
- ID: 242050
Дәйексөз келтіру
Аннотация
The asymptotic behavior of lower Q-homeomorphisms relative to a p-modulus in ℝn, n ≥ 2, at a point is studied. A number of logarithmic estimates for the lower limits under various conditions imposed on the function Q are obtained. Some applications of these results to the Orlicz–Sobolev classes \( {W}_{\mathrm{loc}}^{1,\varphi } \) in ℝn, n ≥ 3 under the Calderon-type condition imposed on the function φ and, in particular, to the Sobolev classes \( {W}_{\mathrm{loc}}^{1,p} \) for p > n – 1 are given. The example of a homeomorphism with finite distortion which shows the exactness of the found order of growth is constructed.
Авторлар туралы
Ruslan Salimov
Institute of Mathematics of the NAS of Ukraine
Хат алмасуға жауапты Автор.
Email: ruslan623@yandex.ru
Украина, Kiev
Қосымша файлдар
