Linear-Fractional Invariance of the Simplex-Module Algorithm for Expanding Algebraic Numbers in Multidimensional Continued Fractions
- 作者: Zhuravlev V.G.1
-
隶属关系:
- Vladimir State University
- 期: 卷 234, 编号 5 (2018)
- 页面: 640-658
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241968
- DOI: https://doi.org/10.1007/s10958-018-4034-3
- ID: 241968
如何引用文章
详细
The paper establishes the invariance of the simplex-module algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^1\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ). It is shown that the convergents of the transformed collections of numbers α′ satisfy the same recurrence relation and have the same approximation order.
补充文件
