Linear-Fractional Invariance of the Simplex-Module Algorithm for Expanding Algebraic Numbers in Multidimensional Continued Fractions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper establishes the invariance of the simplex-module algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^1\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ). It is shown that the convergents of the transformed collections of numbers α satisfy the same recurrence relation and have the same approximation order.

作者简介

V. Zhuravlev

Vladimir State University

编辑信件的主要联系方式.
Email: vzhuravlev@mail.ru
俄罗斯联邦, Vladimir

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018