Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function
- Autores: Golubeva E.P.1
-
Afiliações:
- The Bonch-Bruevich St. Petersburg State University of Telecommunications
- Edição: Volume 234, Nº 5 (2018)
- Páginas: 595-597
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241955
- DOI: https://doi.org/10.1007/s10958-018-4030-7
- ID: 241955
Citar
Resumo
The paper considers the function A(t) (0 ≤ t ≤ 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A′(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum.
Sobre autores
E. Golubeva
The Bonch-Bruevich St. Petersburg State University of Telecommunications
Autor responsável pela correspondência
Email: elena_golubeva@mail.ru
Rússia, St. Petersburg
Arquivos suplementares
