Testing Isomorphism of Central Cayley Graphs Over Almost Simple Groups in Polynomial Time
- Autores: Ponomarenko I.1, Vasil’ev A.2
-
Afiliações:
- St.Petersburg Department of the Steklov Mathematical Institute
- Sobolev Institute of Mathematics, Novosibirsk State University
- Edição: Volume 234, Nº 2 (2018)
- Páginas: 219-236
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241818
- DOI: https://doi.org/10.1007/s10958-018-3998-3
- ID: 241818
Citar
Resumo
A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. It is proved that for any two central Cayley graphs over explicitly given almost simple groups of order n, the set of all isomorphisms from the first graph onto the second can be found in time poly (n).
Sobre autores
I. Ponomarenko
St.Petersburg Department of the Steklov Mathematical Institute
Autor responsável pela correspondência
Email: inp@pdmi.ras.ru
Rússia, St.Petersburg
A. Vasil’ev
Sobolev Institute of Mathematics, Novosibirsk State University
Email: inp@pdmi.ras.ru
Rússia, Novosibirsk
Arquivos suplementares
