On the Stabilization Rate of Solutions of the Cauchy Problem for a Parabolic Equation with Lower-Order Terms


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The following Cauchy problem for parabolic equations is considered in the half-space \( \overline{D}={\mathrm{\mathbb{R}}}^N\times \left[0,\infty \right) \), N ≥ 3:

\( {L}_1u\equiv Lu+c\left(x,t\right)u-{u}_t=0,\kern0.5em \left(x,t\right)\in D,\kern0.5em u\left(x,0\right)={u}_0(x),\kern0.5em x\in {\mathrm{\mathbb{R}}}^N. \)

It is proved that for any bounded and continuous in ℝN initial function u0(x), the solution of the above Cauchy problem stabilizes to zero uniformly with respect to x from any compact set K in ℝN either exponentially or as a power (depending on the estimate for the coefficient c(x, t) of the equation).

作者简介

V. Denisov

M. V. Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vdenisov2008@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018