Asymptotics of Eigenvalues in Spectral Gaps Under Regular Perturbations of Walls of a Periodic Waveguide
- 作者: Nazarov S.A.1,2,3
-
隶属关系:
- Saint-Petersburg State University
- Peter the Great Saint-Petersburg State Polytechnical University
- Institute of Problems of Mechanical Engineering RAS
- 期: 卷 226, 编号 4 (2017)
- 页面: 402-444
- 栏目: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/239998
- DOI: https://doi.org/10.1007/s10958-017-3542-x
- ID: 239998
如何引用文章
详细
We find asymptotic representations of eigenvalues inside gaps of the continuous spectrum of a periodic waveguide with local smooth gently sloped (of depth ε ≪ 1) perturbations of walls. These eigenvalues reach the upper or lower gap edge as ε → +0. We consider several variants of the gap edge structure and obtain conditions guaranteeing the existence or absence of points of the discrete spectrum in small neighborhoods. We calculate the total number of eigenvalues in a gap for small ε. To justify the asymptotic expansions, we use elementary tools of the theory of spectral measure.
作者简介
S. Nazarov
Saint-Petersburg State University; Peter the Great Saint-Petersburg State Polytechnical University; Institute of Problems of Mechanical Engineering RAS
编辑信件的主要联系方式.
Email: s.nazarov@spbu.ru
俄罗斯联邦, 7-9, Universitetskaya nab., St. Petersburg, 199034; 29, Polytechnicheskaya ul., St. Petersburg, 195251; 61, V.O., Bolshoj pr., St. Petersburg, 199178
补充文件
