Asymptotics of Eigenvalues in Spectral Gaps Under Regular Perturbations of Walls of a Periodic Waveguide


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We find asymptotic representations of eigenvalues inside gaps of the continuous spectrum of a periodic waveguide with local smooth gently sloped (of depth ε ≪ 1) perturbations of walls. These eigenvalues reach the upper or lower gap edge as ε → +0. We consider several variants of the gap edge structure and obtain conditions guaranteeing the existence or absence of points of the discrete spectrum in small neighborhoods. We calculate the total number of eigenvalues in a gap for small ε. To justify the asymptotic expansions, we use elementary tools of the theory of spectral measure.

作者简介

S. Nazarov

Saint-Petersburg State University; Peter the Great Saint-Petersburg State Polytechnical University; Institute of Problems of Mechanical Engineering RAS

编辑信件的主要联系方式.
Email: s.nazarov@spbu.ru
俄罗斯联邦, 7-9, Universitetskaya nab., St. Petersburg, 199034; 29, Polytechnicheskaya ul., St. Petersburg, 195251; 61, V.O., Bolshoj pr., St. Petersburg, 199178

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017