Existence and Uniqueness of Spaces of Splines of Maximal Pseudosmoothness
- Авторы: Dem’yanovich Y.K.1, Kovtunenko E.S.2, Safonova T.A.1
-
Учреждения:
- St. Petersburg State University
- N. G. Kuznetsov Naval Academy
- Выпуск: Том 224, № 5 (2017)
- Страницы: 647-660
- Раздел: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/239656
- DOI: https://doi.org/10.1007/s10958-017-3441-1
- ID: 239656
Цитировать
Аннотация
We consider gradation of pseudosmoothness of (in general, nonpolynomial) splines and find conditions under which the space of splines of maximal pseudosmoothness is unique on a given grid, possesses the embedding property on embedded grids, and satisfies the approximation relations. The proposed general scheme can be applied to splines generated by functions in spaces of integrable functions and in Sobolev spaces. The results are illustrated by some examples.
Об авторах
Yu. Dem’yanovich
St. Petersburg State University
Автор, ответственный за переписку.
Email: Yuri.Demjanovich@JD16531.spb.edu
Россия, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504
E. Kovtunenko
N. G. Kuznetsov Naval Academy
Email: Yuri.Demjanovich@JD16531.spb.edu
Россия, 73/1, Vyborgskaya nab., St. Petersburg, 197045
T. Safonova
St. Petersburg State University
Email: Yuri.Demjanovich@JD16531.spb.edu
Россия, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504
Дополнительные файлы
