Bounded Remainder Sets


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers the category (\( \mathcal{T} \), S, X) consisting of mappings S :\( \mathcal{T} \) −→\( \mathcal{T} \) of spaces \( \mathcal{T} \) with distinguished subsets X ⊂ \( \mathcal{T} \). Let rX (i, x0) be the distribution function of points of an S-orbit x0, x1 = S(x0), . . . , xi−1 = Si−1(x0) getting into X, and let δX (i, x0) be the deviation defined by the equation rX (i, x0) = aX i + δX (i, x0), where aX i is the average value. If δX (i, x0) = O(1), then such sets X are called bounded remainder sets. In the paper, bounded remainder sets X are constructed in the following cases: (1) the space \( \mathcal{T} \) is the circle, torus, or the Klein bottle; (2) the map S is a rotation of the circle, a shift or an exchange mapping of the torus; (3) X is a fixed subset X ⊂ \( \mathcal{T} \) or a sequence of subsets depending on the iteration number i = 0, 1, 2, . . .. Bibliography: 27 titles.

作者简介

V. Zhuravlev

Vladimir State University

编辑信件的主要联系方式.
Email: vzhuravlev@mail.ru
俄罗斯联邦, Vladimir

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017