A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a field f \( \circ {T}_1^{i_1}\circ \dots \circ {T}_d^{i_d} \) , where T1, . . . , Td are completely commuting transformations in the sense of Gordin. If one of these transformations is ergodic, we give sufficient conditions in the spirit of Hannan under which the partial sum process indexed by quadrants converges in distribution to a Brownian sheet. The proof combines a martingale approximation approach with a recent CLT for martingale random fields due to Volný. We apply our results to completely commuting endomorphisms of the m-torus. In that case, the conditions can be expressed in terms of the L2-modulus of continuity of f.

作者简介

C. Cuny

Laboratoire MAS, Centrale-Supelec

编辑信件的主要联系方式.
Email: christophe.cuny@ecp.fr
法国, Chȃtenay-Malabry

J. Dedecker

Université Paris Descartes

Email: christophe.cuny@ecp.fr
法国, Paris

D. Volný

Université de Rouen

Email: christophe.cuny@ecp.fr
法国, Saint-Etienne du Rouvray

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016