A New Hermite–Hadamard-Type Inequality and its Application to Quasi-Einstein Metrics
- Autores: Gao X.1
-
Afiliações:
- School of Mathematical Sciences, Ocean University of China
- Edição: Volume 212, Nº 4 (2016)
- Páginas: 503-519
- Seção: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/237043
- DOI: https://doi.org/10.1007/s10958-015-2678-9
- ID: 237043
Citar
Resumo
We first establish a new generalization of the classical Hermite–Hadamard inequality for a real-valued convex function. Then the convexity of the matrix function g(A) = f(det A) is proved under certain conditions imposed on the function f and the matrix A: On this basis, we deduce a new Hermite–Hadamard-type inequality and finally present an application to the estimation of the volume of quasi-Einstein metrics.
Palavras-chave
Sobre autores
X. Gao
School of Mathematical Sciences, Ocean University of China
Autor responsável pela correspondência
Email: gaoxiangshuli@126.com
República Popular da China, Lane 238, SongLing Road, Laoshan District, Qingdao, Shandong, 266100
Arquivos suplementares
