Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.

作者简介

A. Andreev

Far Eastern Center

编辑信件的主要联系方式.
Email: andreev.alexander.ivanovich@gmail.com
俄罗斯联邦, ul. Lenina 18, Khabarovsk, 680000

Yu. Shamilova

Far Eastern Center

Email: andreev.alexander.ivanovich@gmail.com
俄罗斯联邦, ul. Lenina 18, Khabarovsk, 680000

E. Kholodov

Far Eastern Center

Email: andreev.alexander.ivanovich@gmail.com
俄罗斯联邦, ul. Lenina 18, Khabarovsk, 680000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019