Online resources for the prediction of biological activity of organic compounds


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Online resources (PASS Online, SuperPred, SwissTargetPrediction and DRAR-CPI) for the prediction of biological activity of organic compounds from their structural formulas were considered. Based on a test set of drugs approved by 2014, the accuracies of predictions were compared. The four web resources can be arranged with respect to the quality of prediction (sensitivity, S) as follows: SwissTargetPrediction (S = 0.37) < DRAR-CPI (S = 0.41) < Super-Pred (S = 0.53) < PASS Online (S = 0.95). A conclusion was made that PASS Online employs superior machine learning algorithms based on MNA descriptors and Bayessian classifier in contrast to the similarity-based methods used in SuperPred and SwissTargetPrediction or the molecular docking methods used in DRAR-CPI. Possible reasons for the low prediction quality of SuperPred, SwissTargetPrediction, and DRAR-CPI are discussed and the development perspectives of this area of computational chemistry are given.

Об авторах

D. Druzhilovskiy

V. N. Orehovich Institute of Biomedical Chemistry

Автор, ответственный за переписку.
Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

A. Rudik

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

D. Filimonov

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

A. Lagunin

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

T. Gloriozova

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

V. Poroikov

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
Россия, 10/8 ul. Pogodinskaya, Moscow, 119121

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».