Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation.

作者简介

A. Shapovalov

National Research Tomsk State University; National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: shpv@phys.tsu.ru
俄罗斯联邦, Tomsk; Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018