On the Lie Symmetry Algebras of the Stationary Schrödinger and Pauli Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A general method for constructing first-order symmetry operators for the stationary Schrödinger and Pauli equations is proposed. It is proven that the Lie algebra of these symmetry operators is a one-dimensional extension of some subalgebra of an e(3) algebra. We also assemble a classification of stationary electromagnetic fields for which the Schrödinger (or Pauli) equation admits a Lie algebra of first-order symmetry operators.

作者简介

M. Boldyreva

Omsk State University named after F. M. Dostoevsky

编辑信件的主要联系方式.
Email: b_oldyrev_a@mail.ru
俄罗斯联邦, Omsk

A. Magazev

Omsk State Technical University

Email: b_oldyrev_a@mail.ru
俄罗斯联邦, Omsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017