On the Lie Symmetry Algebras of the Stationary Schrödinger and Pauli Equations
- Autores: Boldyreva M.N.1, Magazev A.A.2
-
Afiliações:
- Omsk State University named after F. M. Dostoevsky
- Omsk State Technical University
- Edição: Volume 59, Nº 10 (2017)
- Páginas: 1671-1680
- Seção: Article
- URL: https://bakhtiniada.ru/1064-8887/article/view/238951
- DOI: https://doi.org/10.1007/s11182-017-0959-0
- ID: 238951
Citar
Resumo
A general method for constructing first-order symmetry operators for the stationary Schrödinger and Pauli equations is proposed. It is proven that the Lie algebra of these symmetry operators is a one-dimensional extension of some subalgebra of an e(3) algebra. We also assemble a classification of stationary electromagnetic fields for which the Schrödinger (or Pauli) equation admits a Lie algebra of first-order symmetry operators.
Palavras-chave
Sobre autores
M. Boldyreva
Omsk State University named after F. M. Dostoevsky
Autor responsável pela correspondência
Email: b_oldyrev_a@mail.ru
Rússia, Omsk
A. Magazev
Omsk State Technical University
Email: b_oldyrev_a@mail.ru
Rússia, Omsk
Arquivos suplementares
