Hamiltonian of the One-Dimensional Torsion Schrödinger Equation in a Complex-Valued Basis of Mathieu Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An analytical method for calculating the matrix elements of the Hamiltonian of the torsion Schrödinger equation in a basis of Mathieu functions is developed. The matrix elements are represented by integrals of the product of three Mathieu functions, and also the derivatives of these functions. Analytical expressions for the matrix elements are obtained by approximating the Mathieu functions by Fourier series and are products of the corresponding Fourier expansion coefficients. It is shown that replacing high-order Mathieu functions by one harmonic leads to insignificant errors in the calculation.

作者简介

A. Belov

Tver State University

编辑信件的主要联系方式.
Email: abelov@tversu.ru
俄罗斯联邦, Tver

V. Turovtsev

Tver State Medical University

Email: abelov@tversu.ru
俄罗斯联邦, Tver

Yu. Orlov

Tver State University

Email: abelov@tversu.ru
俄罗斯联邦, Tver

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017